logo main logo main
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
      • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
logo main logo main
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
      • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
logo main logo light
研究シーズを検索
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
      • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • データサイエンス学科
    • その他
  • 教務部
    • 教育センター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • イン/ポライトネス
  • 反応溶媒
  • 認知言語学
  • 星辰絵画
  • 隠消現実感
  • 宇宙
  • モスアイ構造
  • 耐震
  • エポキシ樹脂
  • 道案内
  • バイオセンサー
  • ディーゼルエンジン
  • リフォーム
  • ケプラー三角形
  • 原子核理論
  • 表層崩壊
  • パルスNMR分光計測法
  • 基礎学力
  • ROS
  • ライトフィールド

すべてのキーワードを見る

ホーム電気探査法による安全で安価なCT技術の開発
SDGsの分類
研究テーマ
ライフサイエンス
学科の分類
工学部生命工学科

電気探査法による安全で安価なCT技術の開発 医療診断や食品検査への応用を目指して

工学部

生命工学科

生体電子工学研究室

宇戸禎仁 教授

医療機器簡易CT電気インピーダンス

体表面電位分布を計測するために開発した小型電極アレイを用いて,簡単に体内のインピーダンス分布を低侵襲的に計測する技術の開発を行っている。通常のインピーダンスCTのように多数の電極を体表面に配置するのではなく,簡単に着脱が出来る小型電極アレイを計測に用い,地質調査の分野で使用されている電気探査法を利用して内部のインピーダンス分布の再構成を行う。現時点ではまだ,生体の計測には至っていないが,電解液中に導電性ゲルを配置することで人体のインピーダンス分布を模擬し,計測のシミュレーション実験を行っている。また,有限要素法による解析も行い,実験結果と比較を行い,測定精度が分布形状に依存して変化することなどを明らかにしている。

1. はじめに

 体表面電位分布を計測するために開発した小型電極アレイを用いて,簡単に体内のインピーダンス分布を低侵襲的に計測する技術の開発を行っている(1)-(7)。通常のインピーダンスCTのように多数の電極を体表面に配置するのではなく,簡単に着脱が出来る小型電極アレイを計測に用い,地質調査の分野で使用されている電気探査法を利用して内部のインピーダンス分布の再構成を行う。今回の実験では,生体の計測には至っていないが,電解液中に導電性ゲルを配置することで人体のインピーダンス分布を模擬し,計測のシミュレーション実験を行った。また,有限要素法による解析も行い,実験結果と比較を行った。その結果,測定精度が分布形状に依存して変化することなどがわかった。

2. 実験方法

〈2・1> 電気探査法

地中内部の地質構造を非破壊的に調査する方法として電気探査法が普及している。これは地表面に多数の電極を配置し,各電極間のインピーダンスから地中内部のインピーダンス分布を再構成する方法である。一般的なインピーダンスCTでは測定対象の周囲を取り囲むように多数の電極を配置するが,電気探査法では地表面にのみ電極を配置する。そのため,CTと比べて測定精度は低いが,電極配置が簡単であるというメリットがある。

通常の電気探査法では,測定対象の表面に真直ぐ一列に等間隔で電極を接触させて測定を行う。測定する電極配置にはいくつかの方法があるが,今回使用したFig.1に示すエルトラン配置法では,距離aだけ離れた隣接する電極対C1とC2に電流を流し,別の離接する電極対P1とP2の電位差を計測する。

測定対象内部の抵抗率ρが均一であるとすると,データ位置をFig.1 に示すように中央から深さ a の位置として,そこの抵抗率が見掛けの抵抗率に等しいと考えて分布を求める。

つまり電気探査法は,抵抗率が一様でない限りはデータ表示位置の実際の抵抗率と見掛けの抵抗率の差が大きくなる可能性が高くなり,位置の検出精度が著しく低下してしまうことに注意が必要である 

 

図1 電極配置とデータ位置

〈2・2〉 疑似モデルと電極配置

本研究ではFig.2 に示すような,450 mm×310 mmの底面を持つアクリル製の水槽に食塩水を入れ,食塩水中に任意の形の導電性ゲルなどを配置したものを模擬生体模型として導電率分布の測定を行った。導電率の違う食塩水と導電性ゲルやアクリル樹脂片などによって複雑な導電率分布を持つ生体内を模擬している。

電気測定には,水槽の側面に取り付けた15個のグラッシーカーボン電極を使用した。グラッシーカーボン電極は直径3mmの円形であり,隣接する電極の中心間距離は10mmである。電極の中の1対の電流電極から振幅1.5mA,100Hzの正弦波電流を水槽中に流し,別の1対の電位電極で電位を計測した。電位電極による電位計測には高入力インピーダンスのオシロスコープを使用した。なお,食塩水の導電率が比較的大きく,しかも周波数が100Hz程度と低いので,誘電率の影響は無視し,インピーダンスの虚数部は0として解析を行った。

 

図3は水槽の底面(X-Z面)をY軸方向から見た図であり,データ位置を示している。食塩水と導電率の異なるアクリル樹脂片を図3に示す位置に沈め,各データ位置の抵抗率の測定を電気探査法によって行った。また有限要素法によるシミュレーションも行い測定結果と比較した。

図2 水槽と電極の位置
図3 アクリルとデータ位置

3. 実験結果

図4は測定した電圧から電気探査法によって抵抗率の分布を再構成した結果である。図中の破線で囲まれた範囲にアクリル樹脂片が存在している。アクリル樹脂片の電気抵抗は食塩水の電気抵抗に比べて桁違いに大きいため,アクリル樹脂近傍の抵抗率が上昇しているのがわかる。しかし,アクリル片の位置にとどまらず,右上方にかけて帯状に抵抗率が上昇する結果が得られた。

図4 抵抗率の測定結果

図5は有限要素法によって計算した電流分布をもとに測定電極の電圧を求め,電気探査法によって再構成した結果である。このシミュレーション結果は,図4と同様にアクリル片の位置から右上方に帯状に抵抗率が上昇する様子を示している。

図5 抵抗率のシミュレーション結果

4. 考察

図5の有限要素法によるシミュレーション結果には,図4の測定結果と似た,帯状の高抵抗率分布が現れている。これはつまり電気探査法では,実際に抵抗率が高いアクリル片の近傍に,実際よりも抵抗率が高く見積もられるファントム領域が現れることを意味している。これは,電気探査法を用いたインピーダンス分布の計測を行う上で注意しなければならない問題であり,ファントムの解消法を検討する必要がある。

 

定量的にはシミュレーション結果の方が測定結果より抵抗率が高くなっている。この原因についてはさらに詳細な解析が必要であるが,原理的に電気探査法は抵抗率の定量的な計測よりも,抵抗率の異なる部位の検出に向いている測定方法である。

論文

「電気探査法による生体インピーダンス計測の模擬実験」(2018)宇戸禎仁『電気学会論文誌C』138p.1341-1347.

研究者INFO: 工学部 生命工学科 生体電子工学研究室 宇戸禎仁 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
+2
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • データサイエンス学科
    • その他
  • 教務部
    • 教育センター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • ライトフィールド
  • ディーゼルエンジン
  • 表層崩壊
  • パルスNMR分光計測法
  • 耐震
  • 隠消現実感
  • 星辰絵画
  • 道案内
  • バイオセンサー
  • リフォーム
  • エポキシ樹脂
  • 原子核理論
  • 宇宙
  • 基礎学力
  • ROS
  • ケプラー三角形
  • 反応溶媒
  • モスアイ構造
  • イン/ポライトネス
  • 認知言語学

すべてのキーワードを見る

同じカテゴリーの研究シーズ

+6
瀧川 宏樹

英国ヴィクトリア朝の文学作品における男性像の研究

本研究では、英国ヴィクトリア朝の男性表象の探求をテーマとしている。当時、男性は女性と比較して、社会的に優遇された立場にあった。そのため、これまでの研究では、社会的に冷遇されていた女性に焦点を当てたフェミニズム研究が盛んに行われてきた。 ところが、昨今のジェンダー研究においては、社会的に優遇されている男性もまた、社会が求める理想的な男性像に苦悩しているのではないかという視点が確立されている。男女平等を確立し、女性が生きやすい社会を作ることは言うまでもないが、男性も生きやすい社会を目指してこそ、真のジェンダー平等の達成と言える。 ブランウェル・ブロンテの作品における男性表象に着目し、そこから見えてくる理想的な男性像と、ブランウェル・ブロンテが実人生で直面した現実の男性の生き様との間の齟齬を探りだすのが、本研究の目標である。

+1
神野 崇馬

電磁ノイズシミュレーター

本研究では、電気回路から発生する電磁ノイズを定量化・可視化するためのシミュレーターを開発しています。汎用的に用いられている回路シミュレーションでは、電磁場や電圧を変数とした解析が行われていますが、本手法はより基本的な物理量である電磁ポテンシャルを用いています。これにより、回路内をノイズ源として伝搬するコモンモードや回路から放射するエネルギーなど、回路内の様々な原因で発生する電磁ノイズを計算することができ、製品開発のより上流で電磁ノイズを考慮した設計が可能になります。

+1
日置 和昭

降雨量観測に基づく土砂災害発生危険度予測・監視に関する研究

 都市デザイン工学科の地盤領域(地盤防災研究室、地盤環境工学研究室)では,近年多発する豪雨や来たるべき巨大地震により山腹斜面や土構造物が崩壊する危険度を予測・評価するためのさまざまな研究を行っています.このうち,降雨量観測に基づく土砂災害発生危険度予測・監視に関する研究を紹介します.

笠原 伸介

低濁度原水の薬注撹拌制御に関する研究

近年、活性炭処理水など凝集性粒子をほとんど含まない低濁度水を対象にPACl注入を行い、急速砂ろ過を運用する事例が増加している。このような状況では、連続的に流入する凝集フロックではなく、突発的に流入する非凝集性粒子への対応を意図した運用、すなわち濁質捕捉効果の高いAl集積層をろ層内に速やかに形成することが重要と考えられる。 本研究では、急速ろ過層が有する固液分離の仕上げ機能を最大限に引き出すための凝集操作要件を明らかにするため、薬注後のGT値がAl集積層の形成と非凝集性粒子の阻止率に及ぼす影響を検討した。

和田 英男

温暖化防止対策のためのスマートウィンドウ開発

 地球温暖化による気候変動を解決するためには、熱エネルギーを効率的に使用して物質から放出される排熱を抑制することが重要です。二酸化バナジウム(VO2)は温度変化が生じることで、熱的に誘発された相転移によって近赤外域の光学特性の急激な変化を引き起こします。このため、可逆的に低温透明状態から高温不透明状態へ移行して自動的に太陽熱流束を調整することができます。本プロジェクトでは、有機金属分解法(MOD)を用いてナノスケール多孔質モスアイ構造を有するVO2薄膜を汎用ガラスに成膜することにより、サーモクロミックガラスを作製しています。また、高原子価カチオン元素を用いた置換ドーピングによる相転移温度の低温化を図り、環境温度に適応できるスマートウィンドウの開発を目指しています。

+3
山口 行一

マルチエージェントを用いた避難シミュレーションツールの開発

近年、豪雨災害や地震災害が連続しています。対象地域から来街者全員が円滑に避難を完了できるかについては、個人ではなく、群集としての避難行動を把握する必要があります。本研究室では、地域に応じた防災・減災メニューの検討を支援するため、群衆を対象とした避難シミュレーションを取り込んだ、複数の避難誘導案や施設整備案の効果を比較・評価するパッケージを構築しています。

山浦 真一

圧電素子を用いた音響振動発電機の試作

自動車や電車、飛行機、工事現場など、我々の周囲は様々な音で溢れています。音もエネルギーを持っていますが、そのエネルギー密度はとても低いため、現状では回収できずに捨てられているのが現状です。本研究では、市販のPZT圧電素子とヘルムホルツ型共振器を用いて音響振動発電機を試作しました。音の周波数550Hzで共振するように設計・試作したところ、550Hzと425Hzで発生電圧が高まりました。120dBの音(すごくうるさい)を聞かせたところ、最大で0.8mWの電力を発生できました。今後はより小さい音でより大きな発電力が得られるように改良していきたいと思っています。

藤井 伸介

歴史的価値・自然の価値を活用したプロジェクトの提案

荻外荘プロジェクト(01) 東京都杉並区住宅街にある「荻外荘」は、内閣総理大臣を務めた近衞文麿が過ごし、政治の転換点となる重要な会議を数多く行った場所です。そこに新たな観光の核となり、歴史的価値を活用した荻窪のまちに融合する展示休憩施設棟の提案を行いました。この地に自然と人が集まるように計画地全体を回遊性のある計画とするだけでなく、街全体に広がるような提案を行いました。 根岸森林公園トイレ(02〜05) 根岸森林公園は、日本初の洋式競馬が行われた場所で、なだらかな地形を生かし、大きな芝生広場が魅力で多くの樹木が植わった森林公園です。この芝生広場に面した場所に、周辺環境を調査し歴史的価値や自然の価値を活用したプロジェクトの提案を行いました。

長森 英二

培養骨格筋の機能的アッセイ技術

生体の骨格筋機能や疲労を定量的に計測することは個人差による困難を生じやすい.そこで,培養骨格筋細胞の活性張力を簡便かつ繰り返し評価可能な技術(特許第5549547号)を開発した.

鎌倉 快之

カメラを用いた人の非接触状態計測

カメラの映像から顔や顔のパーツ,身体の動きを検出して生体信号を計測したり,計測した情報を応用するシステムを作成しています.また,計測したデータが,実際のセンサで計測したデータとどのくらい一致するのか,どんな風に違っているのかについて比較,解析しています. カメラを用いたウェアレス(非接触)での計測とその応用について検討しています.

+1
平郡 諭

協奏物質科学

新エネルギー・省エネルギーを物質科学の観点から創造します。

姜 長安

非把持双腕ロボットによる摩擦力補償無しでの抱きかかえ制御

本研究では,力学的な本質を失わず,3次元運動を2次元運動に簡略化し,要介護者を二つの関節を持った3リンクの物体とみなす.そして,非把持双腕ロボットアームとリンクの間の静止摩擦を利用し,3リンク物体がロボットアームから滑り落ちないための安定領域を求め,その中に摩擦力が最も小さくなる姿勢を求める.得られた最適な角度を用いて,ロボットの抱きかかえ制御を行い,3リンク物体の安定支持が実現できることを示す.

+2
大森 勇門

川上村の微生物資源を利用した食品開発

水源地の森を始めとする豊かな自然に囲まれた奈良県川上村。川上村の植物や土壌、それから家庭のぬか床などから酵母や乳酸菌など、食品への応用が期待できる微生物の単離を行っています。これまでに16種の酵母、15種の乳酸菌を単離しており、現在はこれら単離した微生物資源をパンやヨーグルトの製造へ応用するべく、機能解析を進めています。

+2
大森 勇門

発酵食品中のアミノ酸分析

アミノ酸にはL体、D体と呼ばれる光学異性体が存在します。長年、我々ヒトはD-アミノ酸を利用しないと考えられてきました。しかし分析技術の発達に伴い、D-アミノ酸がヒトの生体内で重要な機能を有していることが明らかになってきました。またD-アミノ酸を用いて食品の呈味性や生理機能を向上させた商品も開発されています。我々の研究室ではD-アミノ酸の食品利用を目標に、発酵食品や食品に関係する微生物中のアミノ酸解析を進めています。

+3
川田 進

アジアの宗教紛争・民族問題と安全保障

1991年以降、中国、インド、ネパール、ミャンマー、カンボジア、ラオス、タイ、ベトナム等で、宗教問題や民族紛争に関する現地調査を継続してきた。主要なテーマは「チベット問題」と「イスラーム紛争」である。「宗教NGO」という視点から、穏健な「宗教ネットワーク」「民族コミュニティ」形成の糸口を明示し、紛争解決の有効な方策を提示する。日本社会が抱える弱点の一つは、「民族問題やイスラーム社会への理解不足」である。一連の研究が、テロ事件の背景や海外在住邦人の安全確保など、日本の安全保障及び民間企業・個人が海外で活動する際の安全確保に資することを目指す。

+5
門内 晶彦

クォークグルーオンプラズマから探る数兆度の世界

物質を形作る最小構成要素であるクォークやグルーオンなどの素粒子は、通常は原子核中の陽子や中性子などのハドロンと呼ばれる粒子内部に閉じ込められています。一方約2兆度以上の超高温になるとクォークグルーオンプラズマ(QGP)と呼ばれる素粒子のプラズマ状態になると考えられています。QGPはビッグバン直後の初期宇宙を満たしていたとされますが、高エネルギー原子核衝突による実験的な生成が可能です。モデル構築、解析計算、数値シミュレーションなどを通じてQGPの物理を理論的に研究しています。

+2
山浦 真一

磁歪材料を応用したエネルギーハーベスト発電体の創製

本技術は、鉄コバルト系磁歪合金の逆磁歪特性を利用し、さらに衝撃付加部を組み込んで一体化させた、衝撃振動発電機です。発電促進のため、発電機内にリング状磁石を設置し、さらに磁歪合金コア材が衝撃により大きくスライドしながら固有振動を起こすため、通常の衝撃振動発電機と比較して、発電時間が長く、さらに発電力も高い点が特長です。一回の打突で30個以上のLEDを点灯させることが可能です。 エネルギーの地産地消に貢献し、IoT機器の駆動も可能です。

東 良慶

流域治水の思想を踏まえた次世代型水害対策への挑戦

これまでの流域の開発は、過去の災害の実績にもとづき、計画規模を設定し,鋭意実施してきました。しかし近年、地球温暖化に伴う気象・水象イベントが極端化し、水災害が激甚化していると考えられています。このことから、上述の計画規模を超過する水害が頻発しており、現状の災害対策では対応できず、私たちが暮らす“まち”を守れない時代に突入しています。 これからの我が国は、水害の発生を許容できる粘り強い“まち”が求められます。本研究では水害特性を過去から読み解き、将来を高精度に予測し、その変化に適した“まちづくり”を考究し、提案します。

+1
石道 峰典

アクアポリン4による水代謝を活用してみずみずしい骨格筋をつくりたい!

骨格筋は水分含有量が約8割であり、水分を豊富に含んだ組織です。骨格筋を構成する筋線維(筋細胞)でのスムーズな水分代謝により筋の恒常性が保たれることから、骨格筋における水分代謝を制御する水分子輸送機構は、健康的で活動的な日常生活を維持するうえでも非常に重要となります。 現在、本研究室では、骨格筋における筋機能の維持・改善やサルコペニア予防など目的に応じた水分代謝の制御を実現するために、水分子輸送機構の主要タンパク質の1つであるアクアポリン4 (AQP4)の生理学的特性の利用法の開発を目指しています。

+2
神田 智子

ユーザの視線行動に適応した エージェントの視線行動の開発と評価

シャイな人間は対話相手の視線に敏感であり,注視されることを嫌うということが示されている.本研究は実験参加者の視線行動に適応するエージェントの視線行動の開発と評価を目的とする.具体的には,対話中のユーザの視線行動をアイトラッカーで取得し,過去15秒間にユーザがエージェントの目を注視していた割合を基に対話エージェントがユーザの目を注視する割合を適応させ,ユーザと類似した凝視量を保ちながら視線行動をとる対話エージェントを開発した.評価実験では,シャイなユーザグループに対話のストレスの軽減効果および対話エージェントへの親近感の向上効果が見られた.

  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
      • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
大阪工業大学
v

Facebook

Dribbble

Behance

Instagram

E-mail

© INNOVATION DAYS 2025 智と技術の見本市.