logo main logo main
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
      • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
logo main logo main
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
      • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
logo main logo light
研究シーズを検索
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
      • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • データサイエンス学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 古典
  • 有機機能材料
  • 道案内
  • 酵素固定化
  • 細胞老化
  • 熱電変換
  • 絹フィブロイン
  • モデル予測制御
  • 人追従
  • 制御工学
  • 微細藻類
  • バイオセンサー
  • 超高齢社会
  • 健康寿命
  • 流体制御
  • ロボット
  • 低炭素化
  • バイオ燃料
  • 導電性ポリマー
  • VR

すべてのキーワードを見る

SDGsの分類
研究テーマ
IT・IoT・AI・ロボティクス
学科の分類
情報科学部情報メディア学科

音声からの高精度感情識別法の開発

情報科学部

情報メディア学科

音声・音楽情報処理研究室

鈴木基之 教授

事前学習モデル合成音声による正規化音声からの感情識別

通常音声から感情を識別するには,声の高さや大きさ,声色といった情報を利用しますが,これらは仮に同じ感情で話していても話す内容(言葉)によって大きく変化してしまいます。 そこで「同じ発話内容を無感情で話している音声」を音声合成を用いて準備し,それとの違いを見ることで高精度に感情を識別する方法を開発しています。近年利用が一般的となった大規模事前学習モデルの効果的な利用方法についても検討を行い,簡単な感情認識実験において97%の正解率を達成しました。

はじめに

音声は相手に「言葉」を伝えるためのものですが,それ以外にも「誰が話したか」とか「どのような気持ちで話したか」といった情報も含みます。人間同士の対話では,こうした情報も含めて相手の意図を読みとり,適切に対話をすすめてききます。

そのため,人間が機械と対話をする場面でも,こうした「言葉」以外の情報を適切に理解することが重要です。特に「感情」を認識することで,より自然で豊かな対話を実現することができます。こうした事から,音声に含まれる感情を自動で認識する方法が古くから開発されてきました。

 

従来から行われている感情識別法

音声に含まれる感情は,声の大きさや高さ,といった「韻律情報」に多く含まれているといわれます。また「声色」自体にも現れます。そこで,音声からこうした情報を特徴量として抽出し,感情識別に用いる方法が古くから提案されてきました。

また近年では,いわゆる「AI技術」が発達してきており,wav2vec2.0 や HuBERT,WavLMといった大量の音声データを用いて自己教師有学習を行った「事前学習モデル」を用いた特徴量抽出法が一般的となってきました。

しかし,こうして得られた特徴量は,いずれも音声から直接抽出されるため,その音声が話している「言葉」に依存します。つまり,同じ感情で話していていも,異なる「言葉」を話せば,当然異なる特徴量となるのです。こうした異なる特徴量を同じ感情として識別しなければならないので,どうしても識別誤りが増えてしまう,という問題点がありました。

また,事前学習モデルの使い方についても検討が必要です。事前学習モデルは音声をベクトル系列に変換するものですが,どこの層の出力を利用するのか,また学習音声の言語依存性はどうか等,まだまだ検討すべき項目は多く残されています。

合成音声による正規化法

音声から感情を識別する際,「同じ内容を,無感情で話している音声」があれば,それとの差分を見ることで感情による違いだけを抽出することができます。もちろんそうした音声を同時に入手することは一般的にはできないので,それを音声合成を用いて作成します。

入力された感情を含んだ音声を一度音声認識し,発話内容のテキストを推定します。それを用いて音声合成を行い,同じ内容を話している音声を生成します。この時,感情を含まないようにして音声合成を行うことで,「無感情」の音声を生成できます。

あとは,両者を事前学習モデル(ここでは,wav2vec2.0 を利用)を用いて特徴量にそれぞれ変換した上で差分をとり,特徴量を正規化します。これを感情識別に用いれば,発話内容に影響されず,高精度に感情識別を行うことができます。

図1:感情認識法の概要

事前学習モデルの利用法

事前学習モデルは大量の音声データを用い,自己教師有学習で学習されます。その結果,音声データをベクトル系列へと変換します。この時,事前学習モデルの最終層の出力のみを利用する方法と,途中の層の出力をすべて利用する方法が提案されています。また,事前学習モデルは多数の言語を含む大量のデータで学習されていますが,その多くは英語音声になります。このモデルがどの程度言語に依存しているのか,日本語音声を利用して再学習すると性能はどう変化するのか,といったことも検討する必要がありますが,詳細な検討は行われていません。

 

感情識別実験

参照音声による正規化法の有効性の検討,また事前学習モデルの利用法の検討を行うため,感情認識実験を行いました。実験には,「日本語感情音声コーパス STUDIES」に含まれる声優1名による音声を用いました。識別すべき感情は4つ(平静,怒り,悲しみ,喜び)であり,それぞれ100発話ずつ,合計400発話を用いています。

各感情1発話ずつ除いた396発話でモデルを学習し,除いた4発話を識別します。この時,モデル学習には乱数を使用することから,実験を行うたびに結果がかわります。そこで,同じデータに対して30回実験を行い,それらの平均を計算しました。こうした実験を,除く発話を変えながら100回行い,最終的な識別率を計算しました。

まずは,事前学習モデルの利用法について検討しました。利用する層を最終層のみとした場合と,全層からの出力を1次元CNNに入力し,重み付き和を計算した場合,また利用するモデルをオリジナルの多言語で学習したモデルと日本語でfine-tuningしたモデルで実験を行いました。なおこの実験では正規化はしておらず,またモデルの学習回数も100回と少なめになっています。

この結果を見ると,日本語でfine-tuningする効果が非常に高いことがわかります。多数の言語で学習したといってもその多くは英語であり,日本語の発音とは大きく異なることから,再学習の効果が大きくでたと思われます。また全層を利用することで様々なレベルの情報を感情識別に活用できるようです。

表1:事前学習モデルの利用法
利用モデル 利用する層 識別率
多言語 全層 36.5%
最終層 29.3%
日本語 全層 93.8%
最終層 68.1%

次に正規化の効果を検討しました。正規化の方法としては,特徴量の差分に加え,ふたつの特徴量をそのままCNNに入力し,その内部で正規化させる方法も実験しました。この時CNNのチャネル数は1〜256まで実験を行いました。表2には,最も性能のよかった128チャネルの結果を掲載しています。また,より正確な性能評価を行うため,学習回数を1,000回に増やして実験を行いました。

表2を見ると,単純に差分をとっただけと比較してCNNでの正規化はよい性能を示すことがわかりました。しかし,それでも正規化しない単純な方法とほぼ同じ性能であり,正規化の有効性を示すことはできませんでした。

表2:正規化の効果
正規化法 識別率
なし 97.0%
差分 96.1%
CNN 96.9%

最後に

本研究では,音声からの感情識別において,事前学習モデルの効果的な利用法,また合成音声との差分に注目した感情識別法について検討を行いました。その結果,事前学習モデルは利用する言語でfine-tuningを行い,更に全層の出力を用いることが重要であることがわかりました。一報合成音声による正規化については,その効果を示すことはできませんでした。

今後は更に検討をすすめ,より効果的な正規化法の開発を行っていく予定です。

論文

「音声合成器の中間表現を利用した発話内容に依存しない感情識別用特徴量の抽出」(2022)八木崇『日本音響学会2022年秋季研究発表会講演論文集』2-Q-32p.1251-1254.

「Improvement of multilingual emotion recognition method based on normalized acoustic features using CRNN」(2022)SuzukiMotoyuki『Proc. 26th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems』p.684-691.

「提示メディアによる感情伝達傾向の差異に関する分析」(2015)土屋誠司『電子情報通信学会論文誌』J98-A-Dp.103–112.

研究者INFO: 情報科学部 情報メディア学科 音声・音楽情報処理研究室 鈴木基之 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
+1
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • データサイエンス学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • モデル予測制御
  • 酵素固定化
  • 流体制御
  • ロボット
  • 導電性ポリマー
  • 絹フィブロイン
  • 道案内
  • 制御工学
  • 低炭素化
  • 古典
  • 有機機能材料
  • 健康寿命
  • バイオ燃料
  • 微細藻類
  • 超高齢社会
  • VR
  • 細胞老化
  • バイオセンサー
  • 人追従
  • 熱電変換

すべてのキーワードを見る

同じカテゴリーの研究シーズ

+1
河合 紀彦

VRのための360度全方位画像・映像からの撮影者や動物体の消去

手に持って簡単に撮影できる全方位カメラ(360度カメラ)が普及し、気軽に360度全方位画像・映像を取得できるようになってきました。このような画像や映像は、Googleストリートビューや不動産サイトでの物件内覧といったVRシステムに利用され、ユーザが好きな方向を見回すことができます。しかし、全方位カメラによる撮影では、その撮影者や周辺の動物体も画像・映像中に映り込んでしまうことが多く、そのままの画像をVR用途で使うことはできません。そこで本シーズでは、複数の画像を合成することで撮影者や動物体を全方位画像から消去します。

0
橋本 渉

容易に構築できる球面ディスプレイ環境

球面型没入ディスプレイ環境構築をサポートするシミュレータを開発した.球面ディスプレイを作る際には,ドームスクリーンへの特殊な歪み補正を考慮した投影系の光学設計を行う必要がある.しかし,実際に製作される光学系はシミュレーション通りの精度が保証されるわけではない.使用する際に改めて光学系の微調整が必要となる.本研究では,投影系の光学設計と同時に,光学系の微調整や歪み補正が実行可能な投影シミュレータを開発している.

0
尾花 将輝

アプリケーションログを対象とした異常動作検出の試み

近年のシステムは様々なサーバ,ネットワーク機器,アプリケーション等のソフトウェアとインフラストラクチャ(インフラ),ままたはクラウドサービスが複雑さに関係しあうシステムが多い.このように複雑化する一方で,ソフトウェア,またはインフラ,クラウド等を環境に合わせて正常に設定する必要がある.しかし,設定項目が多すぎるため,設定ミスによる障害の発生や,更にどの機器に原因が発生したのかがわからない上に特定する事には多大なコストがかかる.複雑なシステムの障害を検出するための第1段階としてソフトとインフラをシームレスにリプレイするログリプレイヤのプロトタイプを開発した

+5
廣井 富

手すりの上を移動する道案内ロボット

 本コミュニケーションロボットの特徴は、手すりの上を移動することである。ケータイや地図が読めない方でも問題なく、音声とジェスチャで指示してくれる。さらに人はロボットの手を握って誘導される。この時、ロボットの腕が伸び縮み可能なシステムを構築した。これにより、人の歩行速度に応じた無理のない道案内が可能である。本研究室でアルゴリズムを開発した「測域センサを用いた人検出システム」を応用しており、複数人が存在する環境内においても対象者を見失うことがなく、動作可能である。また、ロボットと案内される人の対話が破綻している場合等にオペレータが介入可能である。その介入頻度を簡易に制御可能であり、オペレータの負荷を軽減することが可能である。

0
島野 顕継

高等学校普通教科「情報」の質向上を目的とした教材及び シラバスの作成

文部科学省高等学校次期学習指導要領解説情報編(平成30年度改訂)では,情報分野を学ぶ上で専門的な知識に触れ,それがどの様な仕組みであるかを知るための教育を重要視している.本研究では情報の科学的な理解を深め,情報分野に対する興味・関心を引き出すことをねらいとする高等学校情報科科目「情報I」で実際に活用でき,特定の環境を用意できる現場を助ける教材開発及びシラバスの作成を行った.

+1
牧野 博之

ばらつきに対応したSRAMの動作安定化に関する研究

トランジスタのしきい値電圧のばらつきによってSRAMが動作不良となる問題に対して、これを救済し歩留まりを向上させる手法を開発しました。まず、オンチップでしきい値電圧を測定する方法を提案し、5mVの精度で検知可能であることを確認しました。さらに、様々なしきい値電圧において、メモリセル(記憶回路の最小単位)に与える電圧を変化させて動作可否を調べることにより、SRAMに与える最適電圧を明らかにしました。なお、本研究はJSPS科研費 (JP23560423)の助成を受けたものです。

+4
村田 理尚

熱電発電に必要な高性能 n 型熱電フィルムを開発

未利用の排熱から発電する熱電発電技術に関して、大気安定な塗布膜としてはこれまでで最も高い性能をもつ有機系n型熱電フィルムの開発に成功しました。n型半導体の材料の水分散液にエチレングリコールを添加剤として加える独自の環境調和型の手法を開発しました。多様な形状に貼り付けて利用する柔らかい熱電変換素子としてIoT社会への貢献が期待されます。

+1
山浦 真一

圧電素子を用いた音響振動発電機の試作

自動車や電車、飛行機、工事現場など、我々の周囲は様々な音で溢れています。音もエネルギーを持っていますが、そのエネルギー密度はとても低いため、現状では回収できずに捨てられているのが現状です。本研究では、市販のPZT圧電素子とヘルムホルツ型共振器を用いて音響振動発電機を試作しました。音の周波数550Hzで共振するように設計・試作したところ、550Hzと425Hzで発生電圧が高まりました。120dBの音(すごくうるさい)を聞かせたところ、最大で0.8mWの電力を発生できました。今後はより小さい音でより大きな発電力が得られるように改良していきたいと思っています。

+2
神田 智子

ユーザの視線行動に適応した エージェントの視線行動の開発と評価

シャイな人間は対話相手の視線に敏感であり,注視されることを嫌うということが示されている.本研究は実験参加者の視線行動に適応するエージェントの視線行動の開発と評価を目的とする.具体的には,対話中のユーザの視線行動をアイトラッカーで取得し,過去15秒間にユーザがエージェントの目を注視していた割合を基に対話エージェントがユーザの目を注視する割合を適応させ,ユーザと類似した凝視量を保ちながら視線行動をとる対話エージェントを開発した.評価実験では,シャイなユーザグループに対話のストレスの軽減効果および対話エージェントへの親近感の向上効果が見られた.

0
河北 真宏

空中への3次元映像表示技術

 近年,非接触型タッチパネルなどのニーズの高まりとともに,空中に映像を表示する技術(空中映像技術)の研究が盛んになっている.現在,テンキーやメニュー画面などの2次元映像を空中に表示し,非接触でインタラクティブ操作する装置が開発されている.本研究では,ボリュームや視差がある3次元映像を空中に表示する技術を実現し,より多彩なインタラクション操作が可能な映像メディアの実現と幅広い分野への応用を目指している.

+1
矢野 浩二朗

VR伴大納言絵巻

初等、中等教育の国語科においては、古典作品の歴史や背景を学びながらそれを楽しむ態度を育成することが求められているが、現実には古典に親しみを持つ児童や生徒は多くないのが現状である。そこで本発表では、我々が開発している絵巻物「伴大納言絵巻」の上巻の没入型インタラクティブコンテンツについて紹介する。このコンテンツでは、絵巻中の人物を切りだしてポリゴン化し、仮想空間内の絵巻に配置している。ユーザーはヘッドマウントディスプレイを通して絵巻を鑑賞し、仮想空間内で絵巻にユーザーが近づくと人物がアニメーションし、シナリオに従って発話できるようにすることで各々の人物が絵巻の物語の中で何をしているのかを理解できるようにした。このコンテンツを活用することで、絵巻物の内容理解、および興味関心が向上することが期待される。

+1
本田 澄

画像認識 AI はどこを見ているの?

さまざまな画像認識AIが提案されていますが、画像のどこを見て認識しているのでしょうか?本研究ではAIの認識箇所を特定する技術であるGrad-CAMを利用して認識箇所を可視化し、どこを見て認識しているかを調べました!その結果から次の提案を考えています。1)画像認識AIの精度比較のために、人間が画像を認識している特徴的な箇所とAIの認識箇所を利用する。2)長年の経験や勘が必要な画像識別技術をAIで再現し、無意識に利用していた画像の特定箇所を明らかにする。

0
東 善之

鋼製インフラ構造物に吸着可能な点検ドローン

日本のインフラ構造物は多くが高度経済成長期に建設され,老朽化が進んでいますが,点検には足場や専門技術が必要であるため,ロボットによる保守・点検作業の効率化が必要とされています.特にドローンは高所点検に適しているものの,ロータを常時回転させるためバッテリーの消耗が課題となっています.本研究では,バッテリーを消費せず橋りょう等の鋼製構造物に吸着でき,離脱の制御も容易な磁気吸着ユニットを搭載した点検用ドローンの開発に取り組んでいます,

0
杉川 智

リアクティブスケジューリングのための数理モデル

システム開発や建設業などのプロジェクトにおいて,スケジュール作成時点では,わからない不確定な事象によってスケジュールの変更を余儀なくされることがある.さらに,昨今の社会では即応性が求められるため,十分に吟味されないままスケジュールを作成し後で変更することもあります.本研究は,それらのスケジュール立案後の変更を考慮したスケジューリングモデルのための基本的な考え方,分類,数理モデルを提案します.本モデルによりスケジュールの変更をふまえた新しいスケジュールを作成すること,新しい解法を提案することが可能になります.

+2
河合 紀彦

事前撮影画像を用いた破綻しない拡張現実感(Indirect AR)とVRとの融合

拡張現実感(Augmented Reality:AR)は,現実世界を映した映像に仮想物体であるCGを合成することで,まるでその場にその物体が存在するかのように見せる技術です.しかし,特に観光地などでカメラ映像に人が写りこむような状況では,AR画像の見栄えが悪化したり,CG合成が正確にできなかったりすることがあります.これに対して,事前撮影画像を用いた拡張現実感(Indirect AR)では,そのような環境下でも,スマートフォンやタブレットといったモバイル端末で頑健で見栄えのいいARを実現します.また,視点や天気・季節を仮想的に変えることでVRと融合することもできます.

0
江口 翔一

時系列データを用いたモデル化

近年の計算機システムの発展と利用環境の向上により、諸科学や産業界のあらゆる分野でデータが蓄積されている。このようにして大量に蓄積されたデータから、 その背後にある自然現象や社会現象のような複雑かつ不確実な現象を読み解くには、データから本質的な情報を抽出するための手法の開発が不可欠である。このとき、不確実現象の解明と予測、知識獲得のために重要な役割を果たすのが現象のモデル化であり、時系列データを用いた現象のモデル化の問題に取り組む。

0
水谷 泰治

図形アニメーションに基づいた学習用並列プログラミング環境の提案と演習の実施に向けた教材の開発

マルチコアCPUの性能を最大限に活用してプログラムを高速実行するためには並列プログラムを作成する必要がある。しかし、一般に並列プログラミングの学習は初学者にとっては容易ではない。その理由として、並列プログラミング自体が難しいことに加え、初学者には馴染みの薄い数値計算問題を題材とすることが多いこと、大規模な計算でない限り並列化の効果を実感しにくいことなどから、初学者の興味を維持しにくいことが考えらえる。本研究では並列化の効果を体感しやすく、かつ、平易な教材を扱える並列プログラミングの学習環境としてProcessing言語を用いた図形アニメーションプログラムのための並列化フレームワークを提案する。また、本環境を用いた並列プログラミング演習を実施するための教材も開発する。

+1
米田 達郎

双児宮の名称変化

語彙の変化をヒトが意図的に起こすことは一般的にはない。自然に変化していくものである。しかし、十二宮の名称は明治になってから学術的に変化する。これはギリシア神話とも密接に結びつくかとも思われるが、何よりも世界基準に合わせるということもあると思われる。ここでは、双児宮の名称変化について、幕末から明治にかけて陰陽宮・双兄宮・双女宮が双児宮へと変化する過程を記述的に確認しつつ、双児宮へと名称変化した背景について考察する。 本研究では、理科学語彙の歴史的な変化を取り上げているが、それは生活語彙・教育語彙の変化ともいえる。多方面に派生する研究の一側面である。

+1
荒木 英夫

加速度センサを用いた歩行状態計測による体調の推定

加速度センサを用いて被験者が歩行している際の体の揺れを測定することにより、被験者の体調変化を検出することを目指す。具体的な想定として、高齢者を対象とした生活改善を目指したプログラムを実施した際にその効果やプログラムへの満足度を評価することは難しく、一般的にはアンケート等を取ることにより評価を行っている。そこで高齢者である被験者に邪魔にならない程度のデバイスを身に着けてもらい、プログラムの前後において歩行時のリズムや重心のブレ方が変化するかを測定しその結果から体調の変化を検出することを目指す。

0
内田 浩明

カント『オプス・ポストゥムム』と初期ドイツ観念論の研究

私の研究テーマは、ドイツの哲学者イマヌエル・カント(1724-1804)の思想究明である。カントの著作は数多くあるが、カント哲学の代名詞とも言える「批判哲学」の主著と目される『純粋理性批判』は、まず理解しなければならないものである。しかし、それだけではカントの思想の全体像は浮かび上がってこない。 そこで、近年はカントが最晩年に書き残した『オプス・ポストゥムム』(ラテン語で「最後の作品」という意味)と呼ばれる草稿と『純粋理性批判』やカントの他の諸著作、および初期ドイツ観念論との関係を解明するための研究を行っている。

  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
      • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
大阪工業大学
v

Facebook

Dribbble

Behance

Instagram

E-mail

© INNOVATION DAYS 2025 智と技術の見本市.