シミュレーションによる半導体デバイスの解析・設計支援技術
[概要] コンピュータシミュレーションを用いて、半導体素子の特性を解析する研究を行っています。ナノ~マイクロメートルスケールにおける電子や原子、あるいは熱の挙動を独自開発した粒子シミュレータで高精度に予測し、より高性能で信頼性の高い半導体素子設計に役立てることを目指しています。
近年,大規模言語モデルをはじめとした深層学習技術に注目が集まり,多くのアプリケーションが性能を競い合っている.構造に複雑化した深層学習モデルの構造を人の手で設計することは困難なため,モデル構造の最適化を意味するNeural Architecture Search(NAS)手法が数多く開発されている.一般的にNASでは推論性能を最大化するようにモデル構造を作成する.しかし,ハイエンドな深層学習モデルは,非常に高コストな計算処理を要求するため,個人の所有するロースペックな計算機では高度なAIアプリケーションを利用することはできない.今後,AI技術が広く普及していくため,ユーザの持つ計算機スペックと推論性能のトレードオフを考慮した多目的NASアルゴリズムの開発を行っている.
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム© INNOVATION DAYS 2026 智と技術の見本市.