ソフトウェアエージェントによる社会シミュレーション
複雑な社会の動きの完璧な予測や、瞬間的な社会の状態の正確な把握は、AIを用いても極めて困難である。一方で、生物や人間など多くのシステムは、動的かつ予測不能な局面において極めて柔軟に対処している。 本研究では、様々な生物や物体を模擬したソフトウェア(エージェント)を作成し、エージェントの自律行動や相互作用によって、社会に実在する問題や、現実では実現しにくい社会環境での生物の振る舞いなどを検証する。
近年,人工知能・機械学習技術の発展もあり,これらの知能化技術をロボットの環境適応能力や自律性の付与の手段として用いることが期待されています.しかし,強化学習を含む機械学習は,一般的に多くの学習時間を必要とする根本的な問題を抱えています.従って,学習時間を短縮することが,実時間で学習する実ロボットにとって,特に解決すべき重要な課題です.私達は,遺伝的アルゴリズムの概念で説明した学習高速化手法を開発し,より高度なロボットの知能化の実現を目指しています.
論文
「実時間学習に向けた知識転移による二輪ロボットの学習時間の削減」(2020)『システム制御情報学会論文誌』33(12)p.317-319.
「学習時間の短縮に向けた状態価値を用いた知識転移手法」(2017)『電気学会論文誌C』137(9)p.1171-1176.
「転移学習における価値に基づく知識の選別」(2015)『システム制御情報学会論文誌』28(6)p.275-283 .
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム© INNOVATION DAYS 2022 智と技術の見本市.