機能材料のマルチスケール最適設計
材料に優れた特性を発現させる鍵は,微視構造にある.次世代新規デバイス開発の核となるマルチフェロイック材料の電気磁気効果を飛躍的に向上することを目的とし,顕微鏡で観察される微視(ミクロ)スケールと機械構造物を捉えた巨視(マクロ)スケールを連成したマルチスケール構造最適設計を駆使して,数値解析主導の材料設計開発を提供する.
自動車や船舶に搭載されているエンジン排ガスに含まれる「スス」を除去するには,多孔質セラミックのフィルタが用いらせますが,ススの蓄積とともに圧力損失が上昇します. 一方,静電集じん技術は,帯電させた微粒子を静電引力で気流から取り除くため圧力損失が極めて低いものの,導電性の高いすすの場合,再飛散しやすいという問題があります. 本申請技術は,コレクター部に誘電体を用いることで,フィルタレスで高効率に集塵を行い,同時に,誘電体上で低温プラズマによって酸化分解まで行うことが可能です.
論文
「Collection of Particulate Matters in Exhaust Gas Using the Attractive Force Induced by Surface Charging」(2022)『IEEE Transactions on Industry Applications』58(2)p.2462-2470.
「Collection of Carbon Particles Using the Attractive Force Created by Surface Charging」(2020)『Proceedings of 2020 IEEE-IAS Annual Meeting』p.1-5.
「Collection of Particulate Matters in Diesel Exhaust Gas by Uneven Potential Distribution Created along a Dielectric Surface」(2021)『Proceedings of 2021 IEEE-IAS Annual Meeting』p.1-6.
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム© INNOVATION DAYS 2022 智と技術の見本市.