カテゴリー・キーワードから探す

情報科学部

情報メディア学科

Visual Computing研究室

村木祐太 講師

2件の研究シーズ

単一画像からの露出補正

HDRは露光の異なる複数枚の画像を用いることで視認性を回復する手法であり,広く利用されている.しかし,移動する被写体において不向きであるとともに,過去に撮影された画像に使用することができない.そこで本研究では,一枚の画像から疑似的に多重露光画像を生成 し,それらを合成することで視認性の回復を行う手法を提案する.本手法は,自然界の色情報を完全に損失していない画像を対象とし,エッジ情報を用いて明度を自動調整することで,疑似多重露光画像を生成する.

植物画像を対象とした枝の構造復元

近年,農家の高齢化や減少に伴い,カメラを用いた植物の自動監視技術が注目されている.しかし,植物の成長具合を判断する指標である枝構造の情報を取得する場合,葉によって枝が隠れてしまうため枝の情報を取得することが困難である.そこで,本研究では対象の植物を多視点から撮影し,多視点からの植物画像を入力として,枝の三次元構造を復元する.はじめに,多視点から撮影した植物画像に対して,深層学習による画像変換を行い,枝の存在確率画像を生成する.枝の存在確率画像とは,枝の存在確率を画素値で表した画像のことを指す.そして,多視点での枝の存在確率画像を用いて,三次元構造の復元を行うことで枝の構造復元を実現する.