学部・学科の分類 - 情報センター

3件の研究シーズが見つかりました

中西 真悟

貴金属比の類似比が奏でる数理情報デザイン

黄金比とピタゴラスの定理を魅了させるケプラー三角形に、一般化されたフィボナッチ数列を応用した新たな貴金属比の類似比の魅力を提案しました。発表後に定義式には第2類似比がカッパー比、第3類似比がニッケル比と1990年代後半に命名されていたことがわかったのですが、命名者も際立った数学的・芸術的魅力は言及しませんでした。一方で、従来の貴金属比の第4貴金属比にもカッパー比、第5貴金属比にもニッケル比が記載されることがあり、名称の由来や情報とその信憑性に確信を持てませんでした。したがって、発表時のコンセプトの通りに従来の第2貴金属比である白銀比、第3貴金属比である青銅比を基準に対比しながら今回の発表を公開して、ご閲覧いただく皆様のご意見を聴くことにしました。科学・技術ならびに芸術の世界に役立つ発展に繋がれば嬉しいです。ところで、白銀比に必要な直角二等辺三角形と、ペル数列の代わりにヤコブスタール数列を活用した貴金属比の類似比には、従来の貴金属比とは導出こそ異なるけれども、とても美しい数理と芸術の可能性が隠されていました。貴金属比の類似比の幾何学的特徴を調べながら、有名な数学者の功績を加えて調和させていくと、その美に魅せられます。下記は、提案から1年間の成果のギャラリーです。ご堪能ください。

越智 徹

ハイフレックス形式による社会人向けAI人材育成訓練プログラム

本内容は、2020年度秋に実施した、対面とオンラインを併用したハイフレックス形式による、社会人向けAI人材訓練プログラム(厚生労働省・一般社団法人CSAJ共同事業)の概要である。 共同研究者:館野浩司(大阪工業大学, 同志社大学他),宮崎龍二(広島国際大学),鈴木大助(北陸大学),出木原裕順(広島修道大学),尾崎拓郎(大阪教育大学)

中西 真悟

標準正規分布の幾何学的対称性

連続な確率変数の確率密度関数の積分形は、0から1までで評価できる累積分布関数です。では、累積分布関数を積分するとき、積分形の関数の一階の導関数は、累積確率として0から1までの傾きになります。つまり、直角三角形を用いた三平方の定理による評価が可能になります。そこで、標準正規分布の幾何学的対称性を応用しながら三平方の定理を用いてみると、新たな確率評価基準が思考できます。