強化学習を用いたロボットの知能化
近年,人工知能・機械学習技術の発展もあり,これらの知能化技術をロボットの環境適応能力や自律性の付与の手段として用いることが期待されています.しかし,強化学習を含む機械学習は,一般的に多くの学習時間を必要とする根本的な問題を抱えています.従って,学習時間を短縮することが,実時間で学習する実ロボットにとって,特に解決すべき重要な課題です.私達は,遺伝的アルゴリズムの概念で説明した学習高速化手法を開発し,より高度なロボットの知能化の実現を目指しています.
本研究では様々なドメインや開発スタイルに属するソフトウェア開発に対して有効なソフトウェア信頼性モデルを構築し活用方法を広く普及することでソフトウェア開発をより効果的で制御可能とすること目的とします。そのためには多くの企業の開発データの収集方法および普及方法としてウェブアプリケーションの開発が必要です。また企業の開発データのみならずオープンソースソフトウェアにおける開発データも対象とします。本研究を行うことで現在困難とされている開発スケジュールの定量的な決定に役立つと考えられます。
論文
「Detection of Unexpected Situations by Applying Software Reliability Growth Models to Test Phases」(2015)『2015 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)』p.2-5.
「Case Study: Project Management Using Cross Project Software Reliability Growth Model Considering System Scale」(2016)『2016 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)』p.41-44.
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム