logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 直流配電
  • 臨場感音響
  • 滅菌・殺菌
  • 細胞シート工学
  • 医療機器
  • 星辰絵画
  • 電波システム
  • レーザー損傷耐性
  • 視線
  • 非把持双腕ロボット
  • 消防
  • 防災
  • 電子ビーム応用技術
  • MIMO
  • 仮想現実
  • 強化学習
  • オンライン授業
  • モデル予測制御
  • 建築計画
  • 砂ろ過

すべてのキーワードを見る

ホーム樹脂製マイクロ流体デバイスの量産に向けた拡散接合装置の開発
SDGsの分類
研究テーマ
ものづくり・製造技術
学科の分類
工学部機械工学科

樹脂製マイクロ流体デバイスの量産に向けた拡散接合装置の開発 拡散接合による非平滑プラスチック平板の接合技術

工学部

機械工学科

マイクロ流体力学研究室

横山奨 講師

マイクロ流体デバイス拡散接合

本技術は、主に金属の接合に用いられていた拡散接合を高分子樹脂に適用することで、医療用ディスポーザブルマイクロ流体デバイスの安価な量産の実現を目標としています。拡散接合は、母材を溶かすことなく接合界面を一体化するため、接合により透明性を損なうことはありません。さらに、多少の凹凸や切削痕が残っていても接合可能です。加工面への後処理も不要で、多種多様な高分子樹脂に対応可能です。現在、商用利用を目指して試作機を開発しており、テストサンプルとしてPMMA製のマイクロ流体デバイスの接合に成功しています。

従来のマイクロ流体デバイスで主に用いられてきたポリジメチルシロキサン(PDMS)は、各種タンパク質の吸着や、高いガス透過性などから必ずしも理想的なマイクロ流体デバイス用材料とは言い難いものでした。また、PDMS製マイクロ流体デバイスの製造工程は手作業が多く、量産には不向きで、高コストなデバイスになりがちでした。

そこで当研究室では、高分子樹脂製マイクロ流体デバイスへの移行を目指し、拡散接合技術を用いたマイクロ流体デバイス量産技術の確立を目指しています。拡散接合装置の試作機の開発を進めており、500 μmまでの流路を閉塞することなく接合することに成功しています。今後も、装置の改良や接合条件、デバイス設計の最適化を進め、各種マイクロ流体デバイスの開発に貢献するとともに、様々な応用研究を模索していきたいと思います。

固相拡散接合の原理は極めて単純です。右の図に示すとおり、真空あるいは不活性ガス雰囲気下で接合材同士を加圧しつつ、ガラス転移温度付近まで加熱することで、分子運動を促進し一体化します。原理的には、高分子樹脂以外にもガラスや金属への応用も可能であり、多種多様な材料に適応可能です。また、プラズマボンディングの様に、必ずしも平滑面である必要はなく、当研究室では切削加工後のPMMA平板や3Dプリンタで作製したABS平板同士の接合にも成功しています。界面が一体化するという性質上、接合材本来の高い光透過性を維持可能なことも特長です。

一方で、接合材の変形を最小限に抑制するためには、真空中で正確な温度制御と加圧制御を行う必要があります。さらに、温度・圧力条件なども接合の品質に大きな影響を与えます。マイクロ流体デバイスの設計においても最適化の余地は多く残されており、より高品質な接合の実現に向けて継続的に研究を実施しています。

副次的な利点として、切削痕などの微小な凹凸が存在しても問題なく接合でき、接合後は界面の一体化により接合材本来の透明度が復活することが挙げられます。このような特徴から、特に光学観察などを行うデバイスなどへの応用を期待しています。

研究者INFO: 工学部 機械工学科 マイクロ流体力学研究室 横山奨 講師

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 直流配電
  • 電子ビーム応用技術
  • 星辰絵画
  • 強化学習
  • 医療機器
  • 建築計画
  • 非把持双腕ロボット
  • 視線
  • 臨場感音響
  • 電波システム
  • 滅菌・殺菌
  • MIMO
  • 防災
  • 仮想現実
  • 細胞シート工学
  • モデル予測制御
  • 消防
  • オンライン授業
  • 砂ろ過
  • レーザー損傷耐性

すべてのキーワードを見る

同じカテゴリーの研究シーズ

山内 雪路

フリーWiFi接続サービス監視方式と監視装置

集客施設などで来訪者向けのフリーWiFi接続サービスを提供する機会が増えている。ところが大規模通信事業者のサービスを用いず、主たる事業に付随して開設する形態のフリーWiFi接続サービスでは設置者がその稼働状況を気にせず放置したままで必要な時に利用できない場合や、悪意ある利用者がフリーWiFi接続用アクセスポイント(AP)になりすましたAPを設置し、盗聴や中間者攻撃を行う場合がある。本研究では「ダミークライアント」と呼ぶ簡易な装置を開発し、フリーWiFi接続サービスを遠隔地から総合的に監視するとともに、悪意ある攻撃者の出現を迅速に発見可能なシステムサービスが提供可能となった。本研究の成果は地方自治体の公共施設で数年に亘って安定的に稼働しており、トラブルの迅速な発見に貢献している。

高山 成

潜在有効発汗量を使った東京オリンピックマラソン競技における熱中症リスクの評価

一般的に熱中症危険度の指標として湿球黒球温度(WBGT)が使用されています.WBGTは携帯型の機器ですぐに測定できる簡便さがある一方,経験的な指標(めやす)で物理的な根拠に乏しいという欠点がありました.今回学生たちの実験を基に考案されたPESは,ヒトの熱の出入りの数理的な計算(人体熱収支モデル)が基になっており,脱水による体重減少率という定量的な指標で熱中症リスクを評価できます.さらに評価方法も,①気象台のデータから計算 ②WBGT計のような装置で現場で測定 ③WBGT値から推定 と3パターンのバリエーションで使え,物理的な根拠の明確さと実用性を兼ね備えたものになっている点が新しい手法です.

林田 大作

「小さなまち」の維持・管理・運営と地域住文化の継承

 本研究では、従来の建築計画・建築設計・環境デザインでは見過ごされがちであった地方の「小さなまち」の維持・管理・運営のモデルを構築し、空き家対策としてのリノベーション提案を行い、「まちの居場所」を創出する。また、「小さなまち」の地域固有性を発掘・発信するとともに、地域住文化を継承するためのビジョンを提案する。さらに、本研究で得られた成果は「小さなまち」のまちづくりに還元し、コミュニティデザインの場を創出する。

小谷 直樹

強化学習を用いたロボットの知能化

近年,人工知能・機械学習技術の発展もあり,これらの知能化技術をロボットの環境適応能力や自律性の付与の手段として用いることが期待されています.しかし,強化学習を含む機械学習は,一般的に多くの学習時間を必要とする根本的な問題を抱えています.従って,学習時間を短縮することが,実時間で学習する実ロボットにとって,特に解決すべき重要な課題です.私達は,遺伝的アルゴリズムの概念で説明した学習高速化手法を開発し,より高度なロボットの知能化の実現を目指しています.

小林 正治

リサイクル可能なエーテル系溶媒を用いる環境適合型有機合成法

有機合成化学における反応溶媒の役割は極めて重大であり,特に大規模な工場レベルでの製造プロセスでは,原料や試薬に対する相溶性に加えて,安定性,回収・再利用性,安全性,価格などに優れた溶媒が求められている.発表者は,今世紀に開発された日本発の疎水性エーテル系溶媒,シクロペンチルメチルエーテル(CPME)ならびに4-メチルテトラヒドロピラン(4-MeTHP)の基本有機化学特性を解明し,幅広い有機合成反応における溶媒としての活用法を提案した.

寺地 洋之

ものごとの強み弱みと顧客ターゲットに着目したアイデア発想技法

我々が開発した[ニーズデザインメソッド]は「強み・弱みカード」「5x5x2マトリックス」「アレンジカード」「ペルソナシート」の4点を使います。メソッドの進行は大きく2段階に分かれます。まずはものごとの強み・弱みをあきらかにする第1フェーズ、次に第1フェーズであきらかにした強みをさらに強めるアイデア抽出と弱みを反転させて強みに変えるアイデア抽出の第2フェーズです。  KJ法を使った会議などで、無地のカードや付箋を配られて、「思いつくことを書いて」と言われて困ったり、書き出したカードのグルーピングに迷ったことがある人は多いと思います。我々が開発した[ニーズデザインメソッド]は、思考を整理整頓し記述を誘発しやすく、記述漏れがおきないシステムが組み込まれています。そしてアイデア発想が自然に導かれ確実にステップアップするシステムを構築しています。

中村 吉伸

シランカップリング剤によるエポキシ樹脂の高性能化

 超LSIの封止樹脂は,エポキシ樹脂にシリカ粒子が分散されており,界面の接着による高強度化や吸水率低減の目的でシランカップリング剤も加えられている。発表者らは,以下の比較からさらに高性能化できるシランカップリング剤の構造と使用方法を明らかにした。1)前処理法とインテグラルブレンド法  2)構造:界面結合型と疎水化型  3)界面の結合とマトリックスの改質  今後,自動車組立はエポキシ樹脂による接着が主流になるが,この高性能化にも応用可能である。

川原 幸一

新規細胞老化抑制剤|アンヒドロフルクトース

正常細胞は一定の分裂・増殖の後に停止する。この現象を細胞老化といい、分裂を停止した細胞を老化細胞という。特徴として、肥大化とsenescence-associated βガラクトシダーゼ(SA-β-gal)活性が見られる。 老化細胞は無害で、がん化もしないと言われていた。最近、老化細胞は炎症性サイトカインを分泌し、臓器・組織機能低下・障害を引き起こし、多様な加齢性疾患をもたらすことが判明した。さらにガン化の誘導にも関与している。 細胞の老化を抑制することは、現在の日本の超高齢社会において重要である。

中村 友浩

骨格筋オルガノイドを活用した簡便な筋萎縮モデル

我々の研究グループでは、長期的な培養が可能で成熟度が高く、機能評価が可能なマウス骨格筋細胞のオルガノイド作成に成功しており、この骨格筋オルガノイドの培養中に生じる受動的張力を解放することで簡便に生体と類似した筋委縮誘導できる生体外モデルを開発している。この生体外デバイスを利用し、生体の筋萎縮を模倣することが可能であれば、筋萎縮を改善する創薬および高機能食品の開発が飛躍的に進展すると期待できる。

大森 勇門

発酵食品中のアミノ酸分析

アミノ酸にはL体、D体と呼ばれる光学異性体が存在します。長年、我々ヒトはD-アミノ酸を利用しないと考えられてきました。しかし分析技術の発達に伴い、D-アミノ酸がヒトの生体内で重要な機能を有していることが明らかになってきました。またD-アミノ酸を用いて食品の呈味性や生理機能を向上させた商品も開発されています。我々の研究室ではD-アミノ酸の食品利用を目標に、発酵食品や食品に関係する微生物中のアミノ酸解析を進めています。

鵜飼 孝博

非接触型の空間温度分布計測手法

光の屈折を利用した空間の温度分布の計測手法を開発しました.航空機・自動車・流体機械・家電の周辺に生じる熱の移流などの流体現象の把握に役立ちます.現在,複雑な流れ場にも適用できる手法の開発にも取り組んでいます.

鎌倉 良成

シミュレーションによる半導体デバイスの解析・設計支援技術

[概要] コンピュータシミュレーションを用いて、半導体素子の特性を解析する研究を行っています。ナノ~マイクロメートルスケールにおける電子や原子、あるいは熱の挙動を独自開発した粒子シミュレータで高精度に予測し、より高性能で信頼性の高い半導体素子設計に役立てることを目指しています。

荒木 英夫

組み込みシステムの実現に必要なプロセッサにおけるカスタマイズ機能の検討と実現

マイコンを組み込んだ機器を作成する際に、OSを用いるか用いないかは大きな問題である。ここでOSを用いる動機として、ハードウエアリソースの管理や通信、プロセス管理などがある。そこで、これらの機能を限定的にハードウエアで実装することによりシンプルで効率的な組み込みシステムの実現が可能であると考える。この考えを基に、これまでFPGA上に小さなマイコンを複数実装して、プロセス管理をハードウエアで実現するシステムを提案してきた。しかしソフトウエア開発環境が無いため実用的ではない。そこで、mrubyと呼ばれる組み込みマイコン向けの小型VM(Virtual Machine)をハードウエア化することにより、これらの解決ができると考えて研究を行っている。

西 壽巳

ハムノイズフリーで豊かな音色を実現! ギター用光学式ピックアップ

電磁誘導の原理に基づく従来型マグネティックピックアップは、電源トランスなどからの漏洩磁束を拾い、低周波のハムノイズ(ブーンという音)およびバズノイズ(ジーという音)が信号に重畳し悪影響を与えます. その対策としてハムバッカータイプ(主にGibson社製ギターに搭載)の考案など多くの努力が払われてきましたが完全には克服されていません. 本学光エレクトロニクス研究室は、通信用光デバイスや光センシングシステムの研究を長年実施してきました. そこで、これら技術を生かした弦楽器(今回はエレクトリックギター)の弦振動を“光学的”に検出する光学式ピックアップを考案・試作しました. 電磁誘導ではなく光量変化で弦振動を検出するためハムノイズを拾うことはありません!

吉田 福蔵

熱刺激電流からのトラップの分布状態可視化による信号の分離解析

電気・電子デバイス素子の改善・高性能化にあたり, 電気伝導に影響を与える材料内部の欠陥準位や空間電荷そして添加剤等を調べることは重要であり, 従来からの大きな課題である. 熱刺激電流(TSC)はまさに材料内部で電荷が移動する変位を高感度に計測できる.測定後の評価に, 従来の評価法の概念を超えた最新の解析法がある. つまりTSCスペクトルのトラップ状態可視化技術は, 一度の実験で得られたあらゆる形状のTSCスペクトルを, 全体にわたってトラップ状態を可視化することで, 正確な信号の分離から解析までを実現できる.

井上 晋教授,大山 理教授,三方 康弘教授,今川 雄亮講師

大型供試体による橋梁の性能評価

 八幡工学実験場は,大阪工業大学が,学内の教育・研究活動の活性化のみならず,産・官・学の各方面との交流により社会や技術の発展に寄与することを目的として設立されたものです.本実験場は,1986年12月に構造実験センターとしてそのスタートを切り,その後,水理実験センター,高電圧実験センターを併置して今日に至っています.広大な実験場の敷地内には特色ある各種の大型実験設備・装置が設置されており,これらは実験場設立の趣旨にしたがい,学内の教育・研究はもとより,学外の関係各方面との綿密な連携のもとに行われる各種の委託研究や共同研究に役立てられています.また,このような学外との交流は実験場で学ぶ学生にとって貴重な体験となっています.
 ここでは,構造実験センターに設置されている主な実験設備・装置を紹介するとともに,その設備・装置を用いて取り組んでいる研究について紹介します.

倉前 宏行

マルチスケール・マルチフィジックス有限要素解析法

金属材料の機械的特性は,材料の微視的な多結晶構造,特に優先方位や結晶粒径に大きく依存する.微視結晶構造制御に基づく高機能材料の創製のためには,熱的影響を含む材料の加工過程における塑性変形過程の結晶集合組織発展の非線形解析手法と加工プロセスパラメータの最適化の確立が必要である. 本研究においては,塑性変形誘起の集合組織発展に加え,熱的負荷による動的再結晶を解析可能なマルチスケール熱・結晶塑性有限要素解析コードを開発した.これにより自動車用ボディ板材のAl合金板材の圧延創製過程のプロセス最適化が可能となる.

岡山 敏哉

都市のオープンスペースにおける樹木配置の最適化

 都市のヒートアイランド現象は、最近の気温上昇に伴い、ますます問題視されることが予想されます。その緩和策のひとつとして、顕熱・潜熱に対する効果や蒸散作用を持つ植物による緑化が効果的です。この研究は、その緑化を効率よく行うために、地面の日照時間を最小化し、一方で植樹のためのコストを最小化することを目的とした最適解を遺伝的アルゴリズム(GA:Genetic Algorithm)を用いて導き出しています。

奥 宏史

ドローンの閉ループシステム同定によるモデリングと飛行制御

幅広い産業でビッグデータの活用が進んでいるが,予測・診断・制御・意思決定の精度向上に際してモデルの重要性が近年ますます高まっている.データエンジニアリングのひとつの分野として,システム同定法によるデータ駆動モデリングについて紹介する.具体例として,MOESP型閉ループ部分空間同定法(CL-MOESP)によるドローンの閉ループ同定と,得られた同定モデルを利用した最適制御器設計の事例研究を紹介する.

淀 徳男

人と共存可能なマイコン制御高輝度多色LED照射型植物工場の開発

将来の世界人口予測から40年後の2060年には世界の人口は100億人を突破すると予想される。100億人を越えると今の食糧生産事情では、全ての食糧を賄うことは不可能であると考えられる。特に日本では各国と比べて38%という食糧自給率の低さから将来の食糧問題は熾烈となる。また、さらに温暖化から、通常の屋外での農作物の生産力は低下することから、屋内での高効率の農業生産技術、特に人と共存可能な高生産力の植物工場が必要となる。

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail