logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 土構造物
  • 祇園祭
  • 臨床試験
  • 計測
  • 組織再生
  • 太陽光発電
  • 人工知能
  • 多言語
  • 学習アプリケーション
  • マルチエージェント
  • 多色LED
  • ネットワーク
  • 逆
  • ヘイトスピーチ
  • グリーンケミストリー
  • 5-AF
  • 化学発光
  • 建築設計
  • 星曼荼羅
  • 流体制御

すべてのキーワードを見る

ホーム絶縁物への電子ビーム照射時の無帯電条件
SDGsの分類
研究テーマ
ナノ・材料
学科の分類
工学部電子情報システム工学科

絶縁物への電子ビーム照射時の無帯電条件 非接触表面電位の定量測定に基づく無帯電電子ビーム照射条件探索

工学部

電子情報システム工学科

ナノエレクトロニクス研究室

小寺正敏 教授

電子ビーム応用技術絶縁物照射時の無帯電条件ナノパターニング

電子ビーム(EB)は原子サイズ程度にまで細く絞れるため、レーザービームより格段に微細な加工が可能で、最先端集積回路製造を含む様々なナノテクノロジーで使用されている。ところが、EB照射される試料が絶縁体の場合、電子電荷の蓄積等で試料が帯電することは避けられず、応用範囲が限られると懸念されてきた。我々はEB照射後の絶縁体表面の電位分布を測定する静電気力顕微鏡(EFM)を開発し、照射条件によって起こる帯電現象がどのような特徴を示しながら変化するかを詳細に調べた。その結果、大量のEB照射を行っても試料が帯電しない条件を発見した。

静電気力顕微鏡法による絶縁体表面の非接触電位測定法

静電気力顕微鏡法

帯電した物体に接地された金属を近づけると、金属中の電子が静電誘導によって移動し帯電物体に面した金属表面には逆電荷が誘起されるため物体と金属両者間には引力が働きます。その物質が正に帯電していても、負に帯電していてもその金属は帯電した物質から引力を受けます。

帯電物に近づけた接地した金属には静電誘導が起こり両者が引き合う

表面電位を応力測定で定量化する静電気力顕微鏡

 ここでは接地された導体としてSi製の厚み5μm、幅50μm、長さ400μmのカンチレバー(片持ち梁)を用いる。静電誘導が起こると両者間に働く応力によってこのカンチレバーは湾曲する。湾曲の度合いはカンチレバーの根元に置かれた圧電素子で電圧として測定されます。

 帯電物体へその裏面に-50V~+50Vの電圧を印加すると、ある電圧でカンチレバーが最も高く表面から離れるときがあります。カンチレバーが一番離れるときは表面からの引力が最小になった時で、帯電電位が電圧印加によって表面が実質的に0電位になり表面電位がキャンセルされたことになります。その時に裏面に印加された電位に負号を付けると、それが元の表面電位であると考えられます。このようにすると、力を測ることで電位を測ることができます。

応力を測定して帯電物体の表面電位を定量的に求める。

電子ビーム照射による観察試料の帯電

 そもそも電気的に中性の試料に電子ビーム照射により負電荷が注入されるので試料が負帯電するのは当たり前ですが、入射電子が試料内の原子を構成する電子を電離してそこに正電荷を作ったり、入射あるいは電離で生成された電子がエネルギーをもって試料内を移動するために、堆積する負電荷密度は電子飛程内の場所によって随分異なります。また、その電荷分布が作る電界下での上記導電機構により電荷が移動し、その電荷分布が変形し時間的に安定しないかもしれないし、安定したとしてもその電荷分布は入射電子が静止することで作られた電荷分布とは異なったものになります。さらに、試料表面から真空中に出た電子が表面に対向して置かれている対物レンズ底の電極に衝突してから跳ね返り試料を再度照射するフォギング電子による試料表面の照射による電荷再配分現象も定量的に明らかになってきました。

 

(a)絶縁性の表面保護膜で覆われたIC回路表面を、加速電圧15kVの電子ビームで観察倍率を1000倍として長時間観察した後に、200倍に変更した時に得られるSEM像。中央の白いコントラストは1000倍の観察時に負帯電した領域である。 (b)表面に丸穴が並ぶ高周波回路用基板上のプラスチック片を加速電圧30kVでSEM観察して得られた像。プラスチック板が帯電してその表面形状とは関係のない白黒コントラストが得られている。 (c)(b)図の観察後に加速電圧を5kVにしたときに現れた歪んだ画像。プラスチックの負帯電により電子ビーム軌道がより遠方を照射しその表面の情報を画像にしているため高周波回路用基板の画像がプラスチックに引き込まれるように歪んでいる。 (d)(b)や(c)と同じ場所を観察するのに(c)の観察後に加速電圧を2kVに下げた時に得られたSEM像。(b)での観察によってプラスチック表面は-2kV以上に負帯電し、-2kVの等電位面がほぼ半球状とみなせる状態となり、電子ビームはプラスチックに入射することなくその等電位面で反射されてSEM試料室の内壁に当たりそこで作られた二次電子が検出されるため、画像は試料上空に配置された試料室内の光学部品などを映している。

導体上絶縁薄膜の帯電現象

 静電気力顕微鏡ををSEM試料室内に置き、電子ビーム照射を受けた絶縁性レジスト表面の二次元電位分布を求めた例を図に示しています。ここで試料はフォトマスク(バルクガラス上70nm厚Cr膜)上に塗布された300nm厚の電子ビームレジスト(FEP171)で、これに+50V印加した状態で加速電圧30kV、ビーム電流1nA、露光時間60秒で電子ビーム照射したときに得られたものです。この例では100μm×160μmのビーム照射部分は正に帯電するがその周辺には試料から真空に放出された二次電子やフォギング電子を吸引(電荷再配分)したためにほぼ+/-600μmにわたって大きな負電位を示す分布が現れています。フォギング電子はビーム照射点から数10㎜離れた試料表面上でも検出されます。

試料に50Vの正電位を印加したうえで加速電圧30kV、ビーム電流1nA、露光時間60秒で電子ビーム照射したときに得られた二次元表面電位分布。ビーム照射点は+2V程度でその周辺に-3V程度に達し、照射点の周り1mm四角に影響を及ぼしている。

電子ビーム照射時に絶縁薄膜が無帯電になる条件

 加速電圧を30kVに固定して電流と露光時間を掛け合わせた露光量の関数として表面電位を求めたものを図に示す。図中の実験値の電子ビーム電流と露光時間の組み合わせは様々ですが導電膜上の300nm厚のレジストに対し露光量が2.5μC/cm2までの露光量では正帯電、それ以上で340μC/cm2以下の露光量では負帯電、340μC/cm2以上の露光量では正帯電し、いわゆるゼロクロスする露光量が2つある結果が得られます。この一連の現象を引き起こしている正負電荷の競合過程としては以下のように解釈できます。2.5μC/cm2までの低露光量では、試料内での電子蓄積が進む以前の段階でごく表面の原子の電離で生成された電子の表面からの放出し二次電子放出が正帯電を引き起こしていると考えられます。電子ビーム照射時間の増加とともに徐々に負電荷のレジスト内部での電子累積が進み、試料内の正電荷量と負電荷量が平衡するのが2.5μC/cm2のときと考えられます。それ以降340μC/cm2の露光量に至るまでは電子電荷蓄積の増加と同時に試料内の電荷キャリアの増加によるEBICが増大し、結果として負電位は大きくならないと考えられます。ところが300μC/cm2を超える露光量では膜内のEBICの導電率が大きくなり試料内でほとんど電子電荷の蓄積が見られなくなる一方で表面からの放出二次電子量の促進が加わって、一方的に正に帯電する状態が作られると考えられる。以上をまとめると、2.5μC/cm2の無帯電は正負電荷量の平衡によるもので、340μC/cm2の無帯電はEBICの確立と二次電子放出促進によるものと考えられます。

加速電圧30kVのラスター走査電子ビーム照射領域表面電位の露光量依存性。様々なビーム電流についてほぼ同様の線上に乗る。2.5と340μC/cm2の露光量ではビーム直下ならびに数mmの広範囲で無帯電となることが分かる。

まとめ

走査電子顕微鏡はナノメートルサイズの表面を観察できるという高い空間分解能のために金属・半導体など工学分野ばかりでなく医歯学・薬学などすべての材料を観察する手段として他分野にわたって使われています。しかしその試料となるもののほとんどの導電率は高いものでなく、電子ビーム照射を受けると帯電します。帯電を回避する代表的な手法は材料表面に導電膜を形成することですが、その膜により材料からの真の信号が隠されてしまいます。帯電を回避するのではなく、そもそも帯電を起こさないことができれば帯電防止策が作った様々なノイズ成分の混入は無く、真の表面を観察することができます。

 今後はここで発見された無帯電条件を多岐の分野で用いられている走査電子顕微鏡の帯電問題に適用して、本来の顕微鏡機器としての性能を上げることができると期待できます。

論文

「Non-charging Conditions of Insulating Film under Electron Beam Irradiation」(2020)水野秀哉『e-Journal of Surface Science and Nanotechnology』18p.106-109.

「Measurement of fogging electrons present in scanning electron microscope specimen chamber」(2020)森本健太郎『Japanese Journal of Applied Physics』59p.SIIB01-1 - SIIB01-8.

研究者INFO: 工学部 電子情報システム工学科 ナノエレクトロニクス研究室 小寺正敏 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 逆
  • 星曼荼羅
  • 5-AF
  • 多言語
  • グリーンケミストリー
  • 多色LED
  • 祇園祭
  • 土構造物
  • 流体制御
  • ヘイトスピーチ
  • 人工知能
  • 学習アプリケーション
  • 太陽光発電
  • ネットワーク
  • 化学発光
  • 建築設計
  • 計測
  • 臨床試験
  • マルチエージェント
  • 組織再生

すべてのキーワードを見る

同じカテゴリーの研究シーズ

原嶋 勝美

ソフトウェアエージェントによるによる社会シミュレーション

 複雑な社会の動きの完璧な予測や、瞬間的な社会の状態の正確な把握は、AIを用いても極めて困難である。一方で、生物や人間など多くのシステムは、動的かつ予測不能な局面において極めて柔軟に対処している。 本研究では、様々な生物や物体を模擬したソフトウェア(エージェント)を作成し、エージェントの自律行動や相互作用によって、社会に実在する問題や、現実では実現しにくい社会環境での生物の振る舞いなどを検証する。

松浦 清

科学と宗教を繋ぐ美術

星曼荼羅の二形式すなわち円形式および方形式(図1)の構成要素とその配置に基づく構成原理ならびに成立と展開の解明を研究の中心としつつ、須弥山図(図2)などの絵画作品において、天文学に基づく科学知識と天空への思想がどのように関連して作品として成立しているのかを研究している。

上野 未貴

創作者の表現を計算機に学習させる

漫画・写真・小説などの創作物を創り,読み解く過程のデータを収集し,人工知能分野で拡がる画像処理・自然言語処理・機械学習・人とコンピュータ間の対話的なシステム開発に基づき,創ることを支援する研究を進めています.

石道 峰典

生体の筋機能の改善に向けたアクアポリン4による水分代謝の制御法の開発

骨格筋は水分含有量が約8割であり、水分を豊富に含んだ組織です。骨格筋を構成する筋線維(筋細胞)でのスムーズな水分代謝により筋の恒常性が保たれることから、骨格筋における水分代謝を制御する水分子輸送機構は、健康的で活動的な日常生活を維持するうえでも非常に重要となります。 現在、本研究室では、骨格筋における筋機能の維持・改善やサルコペニア予防など目的に応じた水分代謝の制御を実現するために、水分子輸送機構の主要タンパク質の1つであるアクアポリン4 (AQP4)の生理学的特性の利用法の開発を目指しています。

藤里 俊哉

培養筋肉を用いた健康科学研究

組織工学・再生医療技術を用いて、体の外で骨格筋を作製することに成功しました。 この人工骨格筋は、長さ約15mm、直径約0.5mmと小さなサイズですが、電気刺激によって、人間の筋肉と同様の収縮運動させることができます。 最近、運動が健康に良いのは、骨格筋が作るマイオカインと呼ばれる物質によることが分かってきました。マイオカインは認知症の予防やがん予防にも効果があるとされています。 この人工骨格筋を運動させることでマイオカインをたくさん作らせることが可能だと考えています。

田熊 隆史

腕振り運動の科学

動物の四脚歩行と異なり,ヒトの二脚歩行は力学的に不安定なものです.体幹や腕部といった質量の大きな部位が脚の上にあり,これを転倒せずに片足で支える制御は大変難しいです.本研究ではこれら上半身を制御の安定性を阻害する要素と考えるのではなく,「うまく上半身を動かすことで歩行を促進できないか?」と考え,そのメカニズムの解明と検証を行います.検証では上半身をバネ要素を持つ柔軟体幹と前後に質点を移動させる腕パーツに近似し,歩行の安定指標である床反力中心が腕振り運動を調整することで操作可能であることを数理的に示しました.またこのことを検証するために実機を試作し,腕振り運動により床反力中心が歩行をしやすいように移動していること,それにより歩行が可能であることを確認しました.

米田 達郎

双児宮の名称変化

語彙の変化をヒトが意図的に起こすことは一般的にはない。自然に変化していくものである。しかし、十二宮の名称は明治になってから学術的に変化する。これはギリシア神話とも密接に結びつくかとも思われるが、何よりも世界基準に合わせるということもあると思われる。ここでは、双児宮の名称変化について、幕末から明治にかけて陰陽宮・双兄宮・双女宮が双児宮へと変化する過程を記述的に確認しつつ、双児宮へと名称変化した背景について考察する。 本研究では、理科学語彙の歴史的な変化を取り上げているが、それは生活語彙・教育語彙の変化ともいえる。多方面に派生する研究の一側面である。

瀧川 宏樹

英国ヴィクトリア朝の文学作品における男性像の研究

本研究では、英国ヴィクトリア朝の男性表象の探求をテーマとしている。当時、男性は女性と比較して、社会的に優遇された立場にあった。そのため、これまでの研究では、社会的に冷遇されていた女性に焦点を当てたフェミニズム研究が盛んに行われてきた。 ところが、昨今のジェンダー研究においては、社会的に優遇されている男性もまた、社会が求める理想的な男性像に苦悩しているのではないかという視点が確立されている。男女平等を確立し、女性が生きやすい社会を作ることは言うまでもないが、男性も生きやすい社会を目指してこそ、真のジェンダー平等の達成と言える。 ブランウェル・ブロンテの作品における男性表象に着目し、そこから見えてくる理想的な男性像と、ブランウェル・ブロンテが実人生で直面した現実の男性の生き様との間の齟齬を探りだすのが、本研究の目標である。

平郡 諭

エネルギー物質科学

新エネルギー・省エネルギーを物質科学の観点から創造します。

橋本 智昭

融液内対流のモデル予測制御

融液内対流を制御する手法としては,るつぼの回転速度の調整,るつぼ側面の温度調整,磁場の印加などが制御入力の候補として考えられる.融液の対流現象を表現するための基礎方程式として,融液を非圧縮性流体と仮定すると,質量保存則から導かれる連続の式,運動量保存則から導かれるNavier-Stokes方程式,温度の拡散現象を表すエネルギー式,濃度の拡散現象を表す物質拡散方程式が挙げられる.これらの基礎方程式で記述される熱流体システムに対して,モデル予測制御系設計法が確立されている.

大塚 生子

日常会話における差別の(再)生産について

「ヘイトスピーチ」という語はこれまで、街宣活動やオンラインの掲示板などで不特定多数の人々に向けて発せられる、特定のアイデンティティを有する人々への差別的言語行動に対して用いられてきた。しかし、偏見や差別が人々の日常会話において談話を通して(再)構築されることを鑑み、本研究では個人間会話というミクロレベルでの差別の実践を問題とする。本研究では実際の会話の談話分析を通し、日常会話における差別は、「差別は悪である」という社会通念・規範よりも、相手との人間関係を良好に保つという相互行為上の規範が優先されるために起こるということを論じた。

西 壽巳

ハムノイズフリーで豊かな音色を実現! ギター用光学式ピックアップ

電磁誘導の原理に基づく従来型マグネティックピックアップは、電源トランスなどからの漏洩磁束を拾い、低周波のハムノイズ(ブーンという音)およびバズノイズ(ジーという音)が信号に重畳し悪影響を与えます. その対策としてハムバッカータイプ(主にGibson社製ギターに搭載)の考案など多くの努力が払われてきましたが完全には克服されていません. 本学光エレクトロニクス研究室は、通信用光デバイスや光センシングシステムの研究を長年実施してきました. そこで、これら技術を生かした弦楽器(今回はエレクトリックギター)の弦振動を“光学的”に検出する光学式ピックアップを考案・試作しました. 電磁誘導ではなく光量変化で弦振動を検出するためハムノイズを拾うことはありません!

寺地 洋之

ものごとの強み弱みと顧客ターゲットに着目したアイデア発想技法

我々が開発した[ニーズデザインメソッド]は「強み・弱みカード」「5x5x2マトリックス」「アレンジカード」「ペルソナシート」の4点を使います。メソッドの進行は大きく2段階に分かれます。まずはものごとの強み・弱みをあきらかにする第1フェーズ、次に第1フェーズであきらかにした強みをさらに強めるアイデア抽出と弱みを反転させて強みに変えるアイデア抽出の第2フェーズです。  KJ法を使った会議などで、無地のカードや付箋を配られて、「思いつくことを書いて」と言われて困ったり、書き出したカードのグルーピングに迷ったことがある人は多いと思います。我々が開発した[ニーズデザインメソッド]は、思考を整理整頓し記述を誘発しやすく、記述漏れがおきないシステムが組み込まれています。そしてアイデア発想が自然に導かれ確実にステップアップするシステムを構築しています。

吉田 準史

音を下げる。そして、音を活かす。

我々の周りには声や楽器、飛行機の音など様々な音があります。同じ音でも心地よい音もあれば騒音もあります。製品音は騒音と捉えられやすい音ですが時には、製品の状態を知る有効な手がかりになります。このことを踏まえ我々は製品音に着目し、その音全てを低減対象とせず、必要な成分と下げるべき成分に分別しようとしています。下げる音には、そのメカニズムを的確に把握する技術を構築しています。そして必要な音に対しては、その音を選び出し状態認知を手助けする方法も検討する等、音が持つ可能性を踏まえた技術開発を進めています。

藤井 伸介

集合住宅リノベーションにおける現代的な住まいの提案

集合住宅においては、時代の変遷や家族構成等の変化により、従来のn L D K型プランから現代の住まいに対応できる空間への再編が必要とされている。更にCOVID-19の影響により、テレワークを行うスペースや趣味を楽しめるスペース等、社会や生活空間に対するイメージが大きく変化し、従来のn L D K型プランとは異なる新しい住まいのあり方に関する提案が求められている。実在する集合住宅1室のリノベーションを行い、現代的な住まいのあり方を提案する(7案)。

中村 成春

コンクリート工学計算ツールとしての収縮ひび割れ制御法の開発

近年の日本建築学会等の建築工事標準仕様書や関連指針では,仕様設計の規定とともに,性能設計の対応が明示されるようになったが,初・中級技術者は,コンピュータプログラム言語等に精通しているとは言い難く,結果的に,各種工学モデルの計算が必要な性能設計の対応が難しい。そこで,コンクリート工学計算ツールとして,表計算ソフトによるマクロ機能を使わないで初歩的な組込み関数によるセルのみの計算に従った計算の見える化に関した計算ツールを構築した。本件は,その一例として,コンクリートの収縮・膨張の体積変化やクリープの変形と,それら変形が拘束されて作用する応力やひび割れ発生やひび割れ幅等を解く手法の計算ツールを開発したものである。

眞銅 雅子

プラズマ照射による植物の成長促進と機能性改善

近年の食の安全性への関心や、健康志向による機能性食品の需要増に応えるため、薬品を使用しない殺菌・消毒処理および農産物の持つ機能性の改善が望まれています。一方で、半導体産業等で使用されるプラズマは電子・イオンに加え化学的活性の高い粒子(活性種)を多量に含み、農業・医療分野においても幅広い用途が見込まれます。本研究では、植物種子等の生体表面にプラズマ照射を行うことで、種子表面の殺菌や、成長の促進、鮮度保持、機能性の向上等を目指しています。

中山 学之

生体の運動制御メカニズムを取り入れた人と親和性の高い介護支援ロボット

人間の神経系や筋骨格系の構造は長い進化の過程で日常生活を行うのに適した形に最適化されてきたものと考えられています。本研究では進化の過程で生物が獲得してきた運動制御メカニズムをロボットに取り入れることにより,動力を使用せずに人やモノの自重を支持できる機械式自重補償装置や,脳の運動制御メカニズムを取り入れた環境適応制御,小脳-大脳基底核をモデル化したニューラルネットワークによる予測的な環境認識・最適行動生成を実現する研究を行っています。

宮部 正洋

熱流体機械の最適化設計手法の開発

熱流体機械を対象として数値流体力学(CFD)による最適化フレームワークを適用します。設計パラメータの最適な組み合わせを迅速に見つけ出す手法を提案します。手法の検証には3Dプリンタを用いて熱流体機械を製作し、性能試験、各種物理量の計測や流れの可視化を行い、現象や勘所を平易に解説します。

平井 智康

高分子の精密合成法とその界面構造制御

立体規則性を精密に制御した有機ー無機からなるプラスチック材料を精密重合法に基づき調製した。今回開発した高分子はキラル分子を認識し、螺旋構造を形成することを見出した。また、その螺旋構造はキラル分子を取り除いた後も保持されることも明らかとなり、キラル分離膜を始めとする医療材料への応用展開が期待される。

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail