logo main logo main
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
logo main logo main
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
logo main logo light
研究シーズを検索
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • データサイエンス学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 古典
  • 熱潜在性硬化剤
  • 顧客ターゲット
  • 反応溶媒
  • 多言語
  • ハロゲン
  • 熱物性
  • 画像修復
  • シャイネス
  • 医療機器
  • 熱電変換
  • くずし字
  • 基礎学力
  • 雰囲気推定
  • 軽量化 ヒートシンク
  • 日常会話
  • フランクル
  • チーム開発
  • 図書館
  • 動作安定化

すべてのキーワードを見る

ホーム標準正規分布の幾何学的対称性
SDGsの分類
研究テーマ
自然科学
学科の分類
情報センター

標準正規分布の幾何学的対称性 ピタゴラスの定理による累積確率評価

情報センター

中西真悟 准教授

標準正規分布対称性ピタゴラスの定理

連続な確率変数の確率密度関数の積分形は、0から1までで評価できる累積分布関数です。では、累積分布関数を積分するとき、積分形の関数の一階の導関数は、累積確率として0から1までの傾きになります。つまり、直角三角形を用いた三平方の定理による評価が可能になります。そこで、標準正規分布の幾何学的対称性を応用しながら三平方の定理を用いてみると、新たな確率評価基準が思考できます。

標準正規分布に関する幾何学的対称性の動画紹介

  1. まず、コイン投げの繰り返しゲームに手数料を考慮して繰り返すと最大獲得額は必ず27%ルール(確率点0.612)に従う説明が始まります。
  2. その時の標準正規分布上に、正方形と円が同時に描ける鍵が見つかったことを紹介します。この円と正方形に加えて2種類の微分方程式で描ける曲線が登場します。
  3. それらに古代エジプト作画法と三平方の定理を用いた提案を行います。
  4. さらに、回転対称性や個性ある図形との幾何学的特徴やその調和を紹介しています。

ウォーミングアップ & 狙い!

  • 右図のような変形サイコロの目を繰り返し足していくと、正規分布に近づくことが知られています。
  • 同様に、勝てば1円を得て、負ければ1円を支払う繰り返しコイン投げを考えます。30,000人分の50回連続試行のコイン投げをゲームとして見た場合には、勝敗による損益もまた正規分布に近づくことがわかります。

一方で、計って比べて統治する文化として誕生する統計学を支援するために、古代バビロニアの頃から三平方の定理の鍵となる数値が文明とともに知られていました。

 

本研究では、この特別な正規分布と三平方の定理に注視し、先人の知恵や文化を借りながら視覚的な幾何学的特徴の解明を狙っています。

繰り返しコイン投げ
変形サイコロやコイン投げの繰返し試行の傾向
確率点0.612003による正負のリターンと正規分布の特徴
確率点0.612003の特徴と鏡映効果

27パーセントルール(片側確率点0.612003)だった!

勝者が手数料を支払ってでも稼ぐ最大獲得賞金額を計算すると確率点が0.612になります。

この数値は、約100年前に英国のカール・ピアソンによって見つけられています。その後、英国のコックスが正規分布のクラスタリングを提案し、米国のケリーが27%ルールとして研究しています。研究責任者も、独自の方法でこの数値に辿り着きました。この確率点0.612は、正規分布の幾何学的解明に大変重要な役割を果たします。

  • 左図の左側図は、そのときの手数料と最大獲得賞金が釣り合っている場合です。
  • 左図の右側図は、その傾向が放物線になり、手数料を考慮した勝者獲得賞金と敗者の損失の鏡映効果として図示しています。
三平の定理と標準正規分布
三平方の定理と標準正規分布

正方形、円形、二組の微分方程式による曲線へ!

  • アスペクト比(縦横比)を1にとり、確率点0.612を2倍して考察すると標準正規分布に正方形を描けます。
  • そこに、勝者が最大賞金を得る確率は27%になるので、全体の勝者獲得賞金額を27%で割り、勝者一人当たりとして見積もる場合と比較します。すると、円を描く鍵が得られます。
  • その後に、累積分布の積分形を意味する微分方程式と逆ミルズ比を意味するベルヌーイ型の微分方程式が見つかり、同時にこれらを図示できました。
  • さらに、この二組の微分方程式と標準正規分布の幾何学的特徴を調べるために、奥行きを感じさせない古代エジプトの作画法を適用します。その結果、25%、50%、75%等、どの確率でも三平方の定理により描けることを発見しました。

直角三角形と原点の重要性とその対称性がわかった!

 実は、上図では、片側確率点が0のときが大変重要でした。

では、右図のように原点を中心に第4事象まで図のイメージを拡大させながら、原点を中心に円を描きます。すると、二組の累積確率の意味がより鮮明になります。

加えて、右図には、切片系の方程式の修正版を図示しています。

ここで、対称な二組の二階線形微分方程式、二組のベルヌーイ型微分方程式を右図の表示のように考えます。すなわち、媒介変数表示形式、もしくはパラメトリック方程式として表示し、確率の比による重ね合わせを実践します。すると、

  1. 確率の比による和の表示形式では回転による対称性
  2. 確率の比による差の表示形式ではせん断による対称性

を表示できます。詳しくはこのリンク(アニメーション)をご確認ください。

切片系の方程式
標準正規分布と逆ミルズ比の切片系の方程式
標準正規分布と回転対称性、正三角形と黄金比との視覚化
標準正規分布と回転対称性、正三角形や黄金比との視覚化

円積問題、正三角形や黄金比とも相性が良かった!

さらに、応用例として、

  • 回転対称性から、正三角形や黄金比等と相性が良かった確率点を左図に示しています。
  • また、逆に図示していませんが、円と正方形を固定して正規分布を変形させていくと、円積問題とも整合性が良いことがわかっています。

以上の成果を求めて、左図の上側の図に示す確率点0.612の幾何学的特徴の解明から研究を継続しました。多くの失敗を繰り返し、先人の知恵や歴史や文化にも頼りながら提案してきました。その結果、得られた成果は神様の設計図を感じる程美しい幾何学模様が描けました。また、本学の先生方をはじめ多くの方々からも助言・支援を受けたことを付記して感謝し、独自の発想で標準正規分布に円、正方形、微分方程式による曲線を描き重ねながら三平方の定理による累積確率評価という構想に辿り着きました。

では、結果までのアプローチ方法は一体何?それがこの研究の独自性?

研究責任者は数学者やデザイナーではございません。膨大なデータ処理やその数式処理や検証には、Excel、Mathematicaが不可欠でした。また、図のイメージ化や創作活動には、歴史、先人・専門家の助言、分野外の文献に加え、Illustrator、zoomIt等でのスケッチと供に協働作業アプリやITツールを多数活用しました。研究者や現場でお困りの方、皆様の取り組みのヒントやプロトタイプになれば幸いです。

上記の本研究の関連作品にご関心のある方は、情報センターの中西真悟のHPへどうぞ!

論文

「Rotationally Symmetric Relations of Standard Normal Distribution Using Right Triangles, Circles, and Squares  – Ordinary Differential Equations, Pythagorean Theorem, Equilateral Triangles, and Golden Ratio –」(2020)中西真悟『京都大学数理解析研究所講究録』(2158)p.171-183.

「Geometric Characterizations of Standard Normal Distribution - Two Types of Differential Equations, Relationships with Square and Circle, and Their Similar Characterizations -」(2018)中西真悟『京都大学数理解析研究所講究録』(2078)p.58-64.

「手数料を考慮したコイン投げの繰返しゲームの賭けにおけるすべての勝者の獲得賞金の総和最大化とその試行回数の関係」(2012)中西真悟『日本オペレーションズ・リサーチ学会和文論文誌』55p.1-26.

研究者INFO: 情報センター 中西真悟 准教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • データサイエンス学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 基礎学力
  • チーム開発
  • 日常会話
  • シャイネス
  • フランクル
  • 熱潜在性硬化剤
  • 反応溶媒
  • 熱物性
  • 動作安定化
  • 軽量化 ヒートシンク
  • 雰囲気推定
  • 図書館
  • 多言語
  • 熱電変換
  • 顧客ターゲット
  • 画像修復
  • 古典
  • ハロゲン
  • 医療機器
  • くずし字

すべてのキーワードを見る

同じカテゴリーの研究シーズ

羽賀 俊雄

クラッド材の作製用双ロールキャスター

世界に先駆けて開発したクラッド材作製用の2種類の双ロールキャスターを開発しました.一つは,複数の縦型高速双ロールキャスターを利用する縦型タンデム双ロールキャスターです.他は,スクレイパーを縦型双ロールキャスターまたは異形双ロール装着する方式です.スクレイパーを使用する方式は,Al-Mg合金やMg合金などの熱間圧延ではクラッド材の作製が容易ではない,または不可能な合金のクラッド材の作製も可能です.

平井 智康

高分子の精密合成法とその界面構造制御

立体規則性を精密に制御した有機ー無機からなるプラスチック材料を精密重合法に基づき調製した。今回開発した高分子はキラル分子を認識し、螺旋構造を形成することを見出した。また、その螺旋構造はキラル分子を取り除いた後も保持されることも明らかとなり、キラル分離膜を始めとする医療材料への応用展開が期待される。

越智 徹

ハイフレックス形式による社会人向けAI人材育成訓練プログラム

本内容は、2020年度秋に実施した、対面とオンラインを併用したハイフレックス形式による、社会人向けAI人材訓練プログラム(厚生労働省・一般社団法人CSAJ共同事業)の概要である。 共同研究者:館野浩司(大阪工業大学, 同志社大学他),宮崎龍二(広島国際大学),鈴木大助(北陸大学),出木原裕順(広島修道大学),尾崎拓郎(大阪教育大学)

谷 保孝

古第三紀神戸層群凝灰岩層の層序学的・記載岩石学的研究

 本研究では,兵庫県三田盆地に分布する神戸層群凝灰岩層をより精密に区分し,それらの凝灰岩層の記載岩石学的性質を明らかにする.野外調査では凝灰岩層の岩相や分布を,鏡下観察では凝灰岩層の軽石斑晶鉱物の組み合わせを記載する.必要に応じて黒雲母などの化学組成も測定する.また,本研究による凝灰岩層序区分に基づいた地質図の作成も進める.本研究の成果は,神戸層群分布域で発生する地すべりに関する課題などを考察する上でも重要な役割を果たすことが期待される.

中西 真悟

貴金属比の類似比が奏でる数理情報デザイン

黄金比とピタゴラスの定理を魅了させるケプラー三角形に、一般化されたフィボナッチ数列を応用した新たな貴金属比の類似比の魅力を提案しました。発表後に定義式には第2類似比がカッパー比、第3類似比がニッケル比と1990年代後半に命名されていたことがわかったのですが、命名者も際立った数学的・芸術的魅力は言及しませんでした。一方で、従来の貴金属比の第4貴金属比にもカッパー比、第5貴金属比にもニッケル比が記載されることがあり、名称の由来や情報とその信憑性に確信を持てませんでした。したがって、発表時のコンセプトの通りに従来の第2貴金属比である白銀比、第3貴金属比である青銅比を基準に対比しながら今回の発表を公開して、ご閲覧いただく皆様のご意見を聴くことにしました。科学・技術ならびに芸術の世界に役立つ発展に繋がれば嬉しいです。ところで、白銀比に必要な直角二等辺三角形と、ペル数列の代わりにヤコブスタール数列を活用した貴金属比の類似比には、従来の貴金属比とは導出こそ異なるけれども、とても美しい数理と芸術の可能性が隠されていました。貴金属比の類似比の幾何学的特徴を調べながら、有名な数学者の功績を加えて調和させていくと、その美に魅せられます。下記は、提案から1年間の成果のギャラリーです。ご堪能ください。

島野 顕継

高等学校普通教科「情報」の質向上を目的とした教材及び シラバスの作成

文部科学省高等学校次期学習指導要領解説情報編(平成30年度改訂)では,情報分野を学ぶ上で専門的な知識に触れ,それがどの様な仕組みであるかを知るための教育を重要視しているが,内容を詰め込み過ぎて現場の疲弊を生じさせかねない内容となっている.本研究では情報の科学的な理解を深め,情報分野に対する興味・関心を引き出すことをねらいとする高等学校情報科科目「情報I」で実際に活用でき,特定の環境を用意できる現場を助ける教材開発及びシラバスの作成を行った.

辻本 智子

認知言語学的手法を応用した英語前置詞教材の開発

英語習得において、しばしば躓きの原因となる多義語の前置詞であり、また認知言語学における多義語研究が前置詞に関して最も進んでいることから、認知言語学の知見を生かした中学生向けオンライン教材『アニメで学ぶ 英語前置詞ネットワーク辞典』を開発した。認知言語学で言う「スキーマ図」のアニメ化がポイントである。

瀬尾 昌孝

リース機器の循環型物流における需要予測と在庫最適化

出荷と撤去・回収の存在する循環型物流において,最適化技術を利用して需要の期待値を予測するとともに,突発需要等の変動を確率分布を用いて予測した.これにより倉庫や販売店など,全国に点在する数十拠点を対象に在庫最適化を行った.実際の物流システムにも採用され,実務担当者による運用からさらにコストを低減することが可能となった.

宮脇 健三郎

ROS対応オリジナルロボットによるPBL教育

大阪工業大学ではロボカップジャパンオープンにおいて@ホームリーグという競技に2011年から参加し,PBLのテーマとして活用しています. PBLにおいては小型の車輪移動ロボットと大型の競技用ロボットを使い分け,効率的に学習を進められるように配慮しています。 2021年からは中之島ロボットチャレンジという屋外自律走行実験にも参加しており,高価な市販ロボットを購入せずとも屋内外で手軽に実験可能なロボットを設計・製作可能なノウハウを有しています.

林 茂樹

知的財産学部・大学院シーズ一覧

本学部・大学院では、教育のみならず知的財産活用の普及を目指し、日々研究活動を進めています。起業や新規市場参入などビジネスアクションを起こすための指標のひとつとして、知的財産の知識・情報を活用するための知見・ノウハウが有効です。これから知財を活用してみたい、知りたいという方々に対しても、教育・研究機関として知的財産活用の裾野を拡げます。

平 博順

深層学習を用いた機械読解技術

私たちの研究室では、英語の入試問題などを題材にして機械読解技術の精度向上に取り組んでいます。最新の深層学習(ディープラーニング)手法を用いることで、従来の単語レベルの解析から文章レベルへの解析が可能となり、読解精度が向上しました。

布施 宏

革新的 超薄肉ダイカスト!

アルミダイカスト製品における4大ニーズ(高耐食性・高放熱性・軽量・低線膨張)を同時に満足する世界初の「革新的超薄肉次世代アルミダイカスト」をご紹介します. 本シーズは新開発の「過共晶Al-25%Si合金」を材料としており,安価な化成処理を施すだけで,革新的耐食性(JIS Z 2371-2000に基づく連続塩水噴霧試験で500時間以上)を実現します. また,低速ダイカストマシンでも肉厚1mm以下の超薄肉化の実現が可能で,アルマイト処理を施すことにより放射率0.9以上の性能が実現可能です. 肉厚1mm以下の超薄肉純アルミのダイカストの研究も行っています.

赤井 愛

深海エレベーター

『深海エレベーター』は音と光を用いた空間型教材です。深海は実際に訪れることが困難で、かつ光が届かない場所であることから、晴眼児、視覚障がい児双方が対等な状態で体験や学びを共有し、楽しむことができるテーマと言えます。 16台の指向性スピーカーと4台の低音用スピーカーを用いた音像の定位や移動と、アルゴリズミックデザインによる光の表現を活用し、水深3000mに至る海の世界を表現、さまざまな深度で現れる海中生物の生態を感じ、学ぶことができる新たな体験を創出しました。

瀬尾 昌孝

深層学習における判断根拠の理解可能な潜在変数空間

深層学習は精度の高い処理を実現できるものの,判断根拠の理解が困難になりがちである.判断根拠が理解できないままでは実応用上問題が発生するケースも多い.例えば医用データ解析など,答えを誤った際の被害が甚大となる分野では現在でもこのような手法の全面利用が法律上規制されている.これに対し,本研究では潜在変数空間のdisentanglement化手法を応用して,目的とするタスクに関係の無い特徴を排除することで,判断根拠の理解が容易な潜在変数空間の獲得を実現した. 本報告では実応用を想定した課題として,撮影環境の大きく異なる顔画像における表情認識などを扱う.この課題では被験者情報以外にも照明や化粧など,表情認識に関係の無い様々なバリエーションを持つデータベースを構築し,学習に際して表情認識に不要な特徴を取り除く手法を開発した.本手法を応用することで,表情認識精度と判断根拠可読性の向上を実現した.

井原 之敏

多軸制御工作機械の加工精度向上

除去加工を行う工作機械は、機械の精度が悪いと加工方法や工具がどんなに良いものを使用しても加工されたものの精度はよくなりません(母性原理)。しかし、機械そのものの精度はあまり見えてこないのが実情です。特に多軸制御工作機械は機械そのものの精度を検査する方法も定まったものが存在しません。そこで私たちの研究室では機械の運動精度を検査する方法を提案し実施することでまず機械の精度を保証し、そのうえで加工方法について提案を行っています。

黒川 尚彦

ことばの伝達内容とそのプロセス

ことばにはさまざまな不思議がある。その中でもっとも関心があるのは、ヒトはどのように発話を理解するのか、である。ことばによって伝達される内容には明示的なものと非明示的なものがある。後者のように、ことばにされていないにもかかわらず、相手の言いたことを理解できることがある。ヒトは相手の発話をどのように理解しているのだろうか。このような問いに、認知語用論の関連性理論の枠組みで分析を行う。

三浦 慎司

製品特性を伝える展示区画のデザイン

印刷・製造機器メーカーの営業所内ショールームの一画において自社製品(UVプリンタ)の展示デザインを計画、設営した。UVプリンタの製品特性をもとにデザイン検討、試作を重ね、来訪者の視覚に加え触覚からの情報により製品の魅力を伝えるデザインとした。展示デザインの変更前後に視線計測を取り入れた検証を行い、視覚から触覚体験に促すデザイン計画の達成を確認した。

福原 和則

イノベーションを誘発するワークプレイスの設計

製品開発を行うワーカーのための新しい環境を構想するにあたっては、単なる「箱モノ」の設計を超えたプロセスを共有することが重要である。場としての環境を設計する行為を会社やチームそのものを構築する行為ととらえ、「デザイン思考」の方法論を取り入れて検討することが重要である。内容の検討に加えてプロセスも合わせてマネージメントすることが求められる。

松本 政秀

OpenFOAMを用いた混相流解析

PCB(ポリ塩化ビフェニル)分解処理反応器内壁における腐食減肉発生メカニズムを解明するための初期検討として,異種二流体が化学反応を伴わずに混合する過程の熱流体解析を実施している.解析ツールとして,OpenFOAMの混相流解析ソルバー群より,非等温で圧縮性が考慮できる二相/二流体の非定常解析ソルバーtwoPhaseEulerFoam を用いた.腐食性を仮定した高密度流体が反応器隔壁の数mmの隙間から鉛直下方へ流れ落ち,減肉の生じた底部内壁へ到達することが確認できた.

中村 友浩

骨格筋オルガノイドを活用した簡便な筋萎縮モデル

我々の研究グループでは、長期的な培養が可能で成熟度が高く、機能評価が可能なマウス骨格筋細胞のオルガノイド作成に成功しており、この骨格筋オルガノイドの培養中に生じる受動的張力を解放することで簡便に生体と類似した筋委縮誘導できる生体外モデルを開発している。この生体外デバイスを利用し、生体の筋萎縮を模倣することが可能であれば、筋萎縮を改善する創薬および高機能食品の開発が飛躍的に進展すると期待できる。

  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
大阪工業大学 研究支援社会連携センター
v

Facebook

Dribbble

Behance

Instagram

E-mail

© INNOVATION DAYS 2021 智と技術の見本市.