logo main logo main
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
logo main logo main
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
logo main logo light
研究シーズを検索
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • データサイエンス学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 顔画像
  • 機能性食品
  • 熱中症
  • 環境デザイン
  • 5G
  • 超高齢社会
  • 映画音声ガイド
  • 煙流動
  • 化学工学&組織工学
  • バイオセンサー
  • フィールド調査
  • 行動分析評価
  • IT人材育成
  • 建築構法
  • 骨格筋
  • 人型ロボット
  • 材料設計
  • 電設
  • 原子核
  • 層序

すべてのキーワードを見る

ホーム医師と協働する手術支援マニピュレータ
SDGsの分類
研究テーマ
IT・IoT・AI・ロボティクス
学科の分類
ロボティクス&デザイン工学部ロボット工学科

医師と協働する手術支援マニピュレータ

ロボティクス&デザイン工学部

ロボット工学科

医療ロボティクス研究室

河合俊和 教授

手術ロボット助手マニピュレータローカル操作

執刀医が手術を一人で行える,安全性に優れるソロサージェリー手術支援ロボットを研究しています. 人と同じ空間に存在し,共存協調して作業を行えるロボット技術の確立を目指して, 内視鏡下手術におけるカメラと鉗子の助手をマニピュレータが担えるよう,医工・産学連携で取り組んでいます. 医師のハイエンドツールであるオールインワンシステムのリモート(遠隔)操作型ロボットに対して, アシスタントツールであるローカル操作型ロボットLODEM(Locally Operated Detachable Endo-effector Manipulator)群は, センシング能力に優れる人と,安定した作業に優れるロボットが補完しあう,インテグレーションです.

研究背景

外科手術では排泄など機能の温存や合併症を回避するため,神経や筋肉および正常組織をできる限り残す微細作業が重要です.内視鏡下手術は低侵襲(短い時間でかつ患部以外の正常な組織にできるだけ損傷を与えない)かつ拡大視野を得られるため,開腹開胸手術と比べて微細作業に優れていることから広く行われるようになってきています.この手術は,患者にとって創痕が小さいため整容的に優れ,身体への負担が軽く,社会復帰も早期に可能です.

しかし,外科医にとっては外径3~12mmで長さ300mmの長軸形状の術具を用いて,術具をガイドするトロカー刺入点を中心としたピボット運動による高度な手技を要求されます.すなわち,執刀医は開腹開胸手術に比べて直感的ではない操作で,自由度が少なく力覚が鈍い術具を扱い,手の振戦を抑え,さらに,内視鏡で視野を提供する助手や,鉗子で臓器を把持牽引する助手と協調する必要があります.

目的

これら内視鏡下手術の課題を解決すべく,執刀医のスキル向上を目指した様々なトレーニング機器が開発される一方で,ロボット技術を適用した手術支援システムへの要求が高まっています.近年,多自由度の専用術具を備える複数本のアームをマスタスレーブ制御し,手ブレ補正やモーションスケーリングと合わせて, 高精度の位置決め可能な手術支援ロボットが国内外で開発されています.これらは医師が患者から離れた場所で操作するリモート操作型です.医師のハイエンドツールとして,先進諸国で臨床利用されています.

一方,患部周辺の状況を的確に把握して手技を進めることが外科手術では重要なことから,医師とロボットが清潔野で協同してスムーズな視野展開と正確な手術手技を行える内視鏡下ソロサージェリーの実現を目指し,LODEMを中心としたローカル操作型マニピュレータシステムの研究開発を進めています.外科医が少ない病院や,途上国での利用を視野に入れています.

小型の術具マニピュレータ

術具マニピュレータの研究は,執刀医と共存協調して手術を行う第3の手に注目しています.ピボット運動の3自由度以上を備え直感的に理解できる新しい機構を考案して,臓器を牽引する作用力,速度,精度,動作範囲を考慮した設計を経て試作し,素早い術野展開できるマニュアル駆動と,臓器の牽引を維持できるモータ駆動を併用する,小型軽量で安全なマニピュレータの研究に取り組んでいます.

ローカル操作インタフェース

操作インタフェースの研究は,患者の傍で手術をする医師(ヒト)の動きに注目しています.術具を持つ手,踏ん張る脚,モニタを見る頭,などの動作を対象にヒトの動作を解析して,非拘束なデバイスで単純かつ直感的に動作をセンシングし,指先スイッチや脚動作のオンオフ制御,異構造マスタスレーブ制御,ミドルウェアを介したマスタとスレーブのマルチ接続など,術具マニピュレータをストレスなくローカル操作するインタフェースの研究に取り組んでいます.

内視鏡映像下での臓器形状や術具の画像認識

画像認識の研究は,手術で注視するモニタ内の内視鏡映像に注目しています.臓器を牽引(カウンタートラクション)して緊張状態となった組織の形状を認識し,鉗子やトロカーなど術具を検出して,これらを指標に執刀医のタイミングで視野を変える,内視鏡ロボットを半自動制御する研究に取り組んでいます.

効果

本提案手術は,清潔野の医師が患者の容態変化など緊急時の対応ができる安心安全な手技です.これにより,通常の内視鏡下手術であれば,患者は住む場所によらず地元の病院で施術を受けることができます.また,手術スタッフの省力化に伴い,外科医は労働時間を短縮でき,診察時間の確保に繋がれば患者にも恩恵があります.さらに,病院および国は手術に要する人件費を抑制できます.なお,難しい手術や研修医の教育は,これまでどおり大学病院などでスタッフを十分に配置して,遠隔操作型の手術支援ロボットなど最新機器を用いて行います.

診断機器に比べて治療機器は輸入超過であり,医療の安全保障のためにも,メイドインジャパン製品が望まれます.近接操作型のロボットデバイス群を統合する安心安全なロボット支援ソロサージェリーを構築し,医師不足の発展途上国へ輸出できれば,国際的な医療格差の縮小も期待できると考えています.

共同研究の先生方

国立がん研究センター東病院大腸外科 西澤先生,伊藤先生
京都大学大学院医学研究科 中村先生
大阪大学大学院基礎工学研究科 西川先生
信州大学学術研究院繊維学系 岩本先生
東京女子医科大学先端生命医科学研究所 正宗先生,堀瀬先生

論文やファンドなど

http://medicalrobotics.ninja-web.net/contents03.html

研究者INFO: ロボティクス&デザイン工学部 ロボット工学科 医療ロボティクス研究室 河合俊和 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • データサイエンス学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 化学工学&組織工学
  • 5G
  • 超高齢社会
  • 映画音声ガイド
  • 人型ロボット
  • 顔画像
  • 建築構法
  • 原子核
  • 電設
  • バイオセンサー
  • IT人材育成
  • 材料設計
  • 熱中症
  • 骨格筋
  • 環境デザイン
  • フィールド調査
  • 煙流動
  • 行動分析評価
  • 層序
  • 機能性食品

すべてのキーワードを見る

同じカテゴリーの研究シーズ

平嶋 洋一

港湾荷役のための小さなAI

近年,港湾のコンテナ移動を考慮した物流システムの重要性が増している.国際物流上のコンテナは殆どが海上輸送を経由するため,港湾で陸送が可能な輸送手段との間でコンテナの積替えを行う必要がある.積替えには,コンテナの配置や移動順序の複雑な調整を含み,コンテナ取扱数の増加とともに物流のボトルネックとなりつつある.本シーズでは複数の学習モデルを接続可能な強化学習法を提案して港湾の大規模物流問題を解決する.

脇田 由実

人同士のコミュニケーションを支援する

会話時の声の音響的特徴(ピッチ、パワー、周波数特性など)及びしぐさの動的特徴の時間変化度合いを観察することで、会話が楽しく進行しているかそれともギクシャクしているかなどの会話の雰囲気を推定できることがわかってきました。この技術を用いた会話支援システムを構築中ですが、他にも、高齢者の理解度衰え推定、場の雰囲気盛り上げシステム、学習支援システムなど、幅広いアプリケーション展開を図っています。

大井 翔

日常行動からの認知機能の評価方法に関する研究

高次脳機能障がい者に対するリハビリテーションにおいて,“気づき”を与えることは重要な課題であります.“気づき”を与えるためには,自身の体験映像と現状の認知状態を定量的にした点数を振り返る必要があります.しかし,従来の認知状態を把握するためにはBADSやD-CATと呼ばれる検査キットで把握するため,リアルタイムな状態を把握することが困難で,毎日検査キットを利用することは難しいです.本研究では,日常行動(調理や掃除など)から認知状態を把握する指標を提案し,リアルタイムかつ日々の認知状態の取得を目的として研究しています.

塚本 勝俊

電波を効率よく利用するヘテロジニアスワイヤレスシステム

Beyond 5Gなどの将来のワイヤレスアクセスネットワークにおけるフロントホールの課題に、無線アクセス区間の広帯域化に伴うMIMOアンテナ数の増加やIoT基盤への応用に起因したフロントホール伝送容量の増大、 一層のスモールセル化に伴って発生する膨大な数のDU(分散無線ユニット)を有する基地局設備の設置、それらへのフロントホールリンク数の増大がある。これらに対する一つの解決策となるのが光ファイバの中に様々な電波に対して透明な自由空間を提供するRoF (Radio over Fiber) ネットワークである。RoFを用いることによってヘテロジニアスワイヤレスに汎用的に使用できるフロントホールと基地局が実現できる。また分散アンテナシステムの構築も容易となる。本シーズでは、RoFによる分散アンテナシステムを紹介し、それを用いた位置検出システムへの取り組みについて述べる。

小松 信雄

移動体の制御に関する研究

自動車や飛行機などの移動体の制御に関する位置計測システム,誘導制御システムの構築を目指して研究を行っている.位置計測システムについては,加速度計,ジャイロ,画像処理を用いた計測を融合し,移動体の位置を瞬時に計測することを目標にしている.誘導制御については,移動体の3次元的位置姿勢を制御するため,制御システムの動的特性を推定する同定を行ない,安定化制御を実現することを目標にしている.

赤井 愛

深海エレベーター

『深海エレベーター』は音と光を用いた空間型教材です。深海は実際に訪れることが困難で、かつ光が届かない場所であることから、晴眼児、視覚障がい児双方が対等な状態で体験や学びを共有し、楽しむことができるテーマと言えます。 16台の指向性スピーカーと4台の低音用スピーカーを用いた音像の定位や移動と、アルゴリズミックデザインによる光の表現を活用し、水深3000mに至る海の世界を表現、さまざまな深度で現れる海中生物の生態を感じ、学ぶことができる新たな体験を創出しました。

村田 理尚

熱電発電に必要な高性能 n 型熱電フィルムを開発

未利用の排熱から発電する熱電発電技術に関して、大気安定な塗布膜としてはこれまでで最も高い性能をもつ有機系n型熱電フィルムの開発に成功しました。n型半導体の材料の水分散液にエチレングリコールを添加剤として加える独自の環境調和型の手法を開発しました。多様な形状に貼り付けて利用する柔らかい熱電変換素子としてIoT社会への貢献が期待されます。

大谷 真弓

「その人らしさ」の表現を目指す

人の「その人らしさ」は、様々な形で表現されます。摂食障害等のこころの病は、その人の「生きづらさの表現」だという視点でも捉えられますが、他方で、芸術活動にその人の表現を載せることで、そこに表われてくるものを、「生きづらさの表現」としてではなく、まさに「その人らしさ」が表われているのだ、という視点から捉えることも可能です。本研究では、「その人らしさ」が芸術活動(本研究では陶芸活動)の中で表現されているという視点から、陶芸活動を視ています。その上で、「その人らしさ」がいかに表われてくるのか、いかに変化していくのかを追い、どのような表現をすることが「生きづらさ」からの脱却へとつながるのか明らかにし、実践につなげます。

井上 明

ICTを活用した教育手法の提案・教材開発の実践

次世代アクティブ・ラーニング手法「ReBaLe(レバレ)®」の提案・実践,「ティンカリング」(身の回りにあるものを自由に組み合わせること)の概念を取り入れたプログラミング学習ツール"YubiTus"、IoTを活用したデジタル学習デバイス"EduDesk"などの研究を進めています。 *ReBaleは富士通株式会社の登録商標です

寺地 洋之

市民協働型ワークショップをふまえたリノベーションデザインの実践と考察

 大阪府枚方市にある菅原生涯学習市民センター・菅原図書館の1F空きスペースを、企画設計や施工段階で市民が参加し、市民・運営者・設計者などが協働しながら議論や提案を重ね、空間をリノベーションに導いたプロジェクトである。研究室がワークショップをリードするためのコンセプトや設計案を作成し、それをもとに空間の方向性や運営方針を地域の市民と管理運営者などと一緒になって考える市民協働型ワークショップを複数回行いながらデザインした。参加された市民のみなさんは小学生から高齢者まで幅広く、活発な意見交換がなされた。また、木材を積極的に活用することをふまえ、次代を担う小学生とその家族を林業の集積地である奈良県川上村を訪ねて林業体験なども実施した。施工段階でも小学生たちの木材などに接するセルフビルドも行うことで素材や空間への愛着・大切さを体感できる取り組みも行なった。地域の市民にとって、職場でも学校でもない、新しい学びやつながりが体感できる場づくりを目指して、木材をふんだんに使った「コミュニティスペースMOKU(モク)」を完成に導いた。完成後も協働型は維持され、使用方法なども話し合いながら空間の利用が促進されている。この経験をふまえ、2020年にはセンター内の菅原図書館のエントランス部のリフォームデザインの提案依頼を受け、設計第1研究室が設計を行い施工が完了した。コミュニティスペースMOKU(モク)とあわせてこの空間も市民が気軽に立ち寄れ本に出会える新たな場所を創出している。

中山 学之

生体の運動制御メカニズムを取り入れた人と親和性の高い介護支援ロボット

人間の神経系や筋骨格系の構造は長い進化の過程で日常生活を行うのに適した形に最適化されてきたものと考えられています。本研究では進化の過程で生物が獲得してきた運動制御メカニズムをロボットに取り入れることにより,動力を使用せずに人やモノの自重を支持できる機械式自重補償装置や,脳の運動制御メカニズムを取り入れた環境適応制御,小脳-大脳基底核をモデル化したニューラルネットワークによる予測的な環境認識・最適行動生成を実現する研究を行っています。

平 博順

深層学習を用いた機械読解技術

私たちの研究室では、英語の入試問題などを題材にして機械読解技術の精度向上に取り組んでいます。最新の深層学習(ディープラーニング)手法を用いることで、従来の単語レベルの解析から文章レベルへの解析が可能となり、読解精度が向上しました。

西應 浩司

人間の視覚行動からみた都市空間の設計基準

建築や都市は生活基盤として、人間に対し大きな心理的影響力を持っています。基本的な人間の移動方法を考えれば、そのデザインは歩行によって我々が得た空間能力に関する研究成果が生かされたものとなるのが理想的だと考えられます。 研究室では、空間能力を司り評価を行う脳機能の左右差や個人差を検討する事から、人間が理解しやすい建築空間、都市空間をつくるための方法を、人間の視覚行動を計測したデータや、脳波計によるデータをもとに探ります。

大森 勇門

発酵食品中のアミノ酸分析

アミノ酸にはL体、D体と呼ばれる光学異性体が存在します。長年、我々ヒトはD-アミノ酸を利用しないと考えられてきました。しかし分析技術の発達に伴い、D-アミノ酸がヒトの生体内で重要な機能を有していることが明らかになってきました。またD-アミノ酸を用いて食品の呈味性や生理機能を向上させた商品も開発されています。我々の研究室ではD-アミノ酸の食品利用を目標に、発酵食品や食品に関係する微生物中のアミノ酸解析を進めています。

瀬尾 昌孝

リース機器の循環型物流における需要予測と在庫最適化

出荷と撤去・回収の存在する循環型物流において,最適化技術を利用して需要の期待値を予測するとともに,突発需要等の変動を確率分布を用いて予測した.これにより倉庫や販売店など,全国に点在する数十拠点を対象に在庫最適化を行った.実際の物流システムにも採用され,実務担当者による運用からさらにコストを低減することが可能となった.

布村 泰浩

C言語初心者向けプログラミング環境

アルゴリズムやシステム開発を学ぶ前段階として,C言語を学ぶためのプログラミング演習を行っているが,C言語に慣れていない初学者には,スペルミス,括弧の書き忘れ,未定義変数への参照などを起因とするコンパイル時エラーが難しく感じられ,コンパイラが生成する多量のエラーメッセージに途方に暮れてしまうことがある.また,プログラム構造の間違いや条件式の誤りにより,想定通りにプログラムが動作しないことも多い.このように初学者がC言語を学ぶ際には多くの壁があり,結果として,C言語に苦手意識を持つ学生がいる.初学者が上記のような壁に躓くことなくC言語の学習を進めるためのビジュアルプログラミング環境を開発している。

福原 和則

イノベーションを誘発するワークプレイスの設計

製品開発を行うワーカーのための新しい環境を構想するにあたっては、単なる「箱モノ」の設計を超えたプロセスを共有することが重要である。場としての環境を設計する行為を会社やチームそのものを構築する行為ととらえ、「デザイン思考」の方法論を取り入れて検討することが重要である。内容の検討に加えてプロセスも合わせてマネージメントすることが求められる。

福原 和則

本に親しむ場の設計

設計の実務経験を活かして地域施設の建築計画を行います。施設特有の技術情報の収集・検証、事例収集・分析を踏まえて、設計試案を作成します。管理者や使用者へのヒヤリング調査やワークショップと通じてニーズを把握したり、設計試案を公開して意見を収集することも可能です。概算見積にもとづいて事業計画を行います。

吉村 勉

高速通信用発振器の相互干渉解析と自動補正に関する研究

近年の高速・高密度の大規模集積回路において,内蔵する発振器の性能がクロック同期系デジタル回路の処理速度に大きな影響を与える。そこで問題となるのが複数の発振器間の相互干渉である。私たちは今まで発振器の干渉ノイズのモデル化およびその実証と,位相同期回路における干渉ノイズの影響について研究してきた。特に完全同期にある発振器間の相互干渉において,小規模の補正回路でその影響を低減する手法を考案し,いくつかの知見を独自に得ている。本研究ではその知見をさらに一般的な凖同期の相互干渉の低減に適用し,今までにない新しい手法での相互干渉の影響削減の提案を行いたいと考えている。

横山 広充

将来的な地下街デジタルサイネージ構築のための感性評価システムの開発

 本研究は将来的な地下街デジタルサイネージ構築のための感性評価システムの開発を大きな目的としている。具体的には実際の地下空間において被測定者に脳波計を装着した状態でデザインした地図を読図させた上で経路探索実験を実施する。取得した脳波計測データと行動観察調査結果の相関などにより、デザインに関する感性評価システムを開発する。実験では可搬型脳波計を用いる。  開発した感性評価システムは新製品の評価やデジタルサイネージなど各デザイン分野において利用者に求められるデザインの創出に寄与することを目指す。

  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • データサイエンス学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
      • 学部 – その他
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • 動画コーナー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
大阪工業大学 研究支援社会連携センター
v

Facebook

Dribbble

Behance

Instagram

E-mail

© INNOVATION DAYS 2021 智と技術の見本市.