リース機器の循環型物流における需要予測と在庫最適化
出荷と撤去・回収の存在する循環型物流において,最適化技術を利用して需要の期待値を予測するとともに,突発需要等の変動を確率分布を用いて予測した.これにより倉庫や販売店など,全国に点在する数十拠点を対象に在庫最適化を行った.実際の物流システムにも採用され,実務担当者による運用からさらにコストを低減することが可能となった.
深層学習においてドロップアウトと呼ばれる手法が用いられている. これは多層型 ニューラルネットワークにおいて, その層ごとに一定の確率でノードを無効にして学習 を行う手法である. 訓練データに過度に適応した学習をしてしまう過学習と呼ばれる 現象に対して有用であるとされ広く使用されている. ドロップアウトを用いたとき, 各 ノードの使用頻度のばらつきは小さくなるが, 層間の辺の使用頻度のばらつきは大きく なる. 本研究では, ドロップアウト法において辺の使用頻度を一定にするような組合せデザイン (dropout design) を定義し, 関連する組合せ構造についてまとめ, その構成法について提案する.
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム