logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • ごみ処理
  • 機械学習
  • アーカイブ研究
  • コミュニケーション支援
  • 再生可能エネルギー
  • AI(人工知能)
  • 生体素材
  • 関連性理論
  • 光物性
  • 植物工場
  • 画像修復
  • ワークショップ
  • 遺伝的アルゴリズム
  • 都市計画
  • プログラミング教育
  • 制御工学
  • くずし字
  • 細胞老化
  • 景観
  • 地盤防災

すべてのキーワードを見る

ホームプラズマ照射による植物の成長促進と機能性改善
SDGsの分類
研究テーマ
エネルギー・環境
学科の分類
工学部電気電子システム工学科

プラズマ照射による植物の成長促進と機能性改善

工学部

電気電子システム工学科

プラズマ物性工学研究室

眞銅雅子 准教授

滅菌・殺菌成長促進プラズマ

近年の食の安全性への関心や、健康志向による機能性食品の需要増に応えるため、薬品を使用しない殺菌・消毒処理および農産物の持つ機能性の改善が望まれています。一方で、半導体産業等で使用されるプラズマは電子・イオンに加え化学的活性の高い粒子(活性種)を多量に含み、農業・医療分野においても幅広い用途が見込まれます。本研究では、植物種子等の生体表面にプラズマ照射を行うことで、種子表面の殺菌や、成長の促進、鮮度保持、機能性の向上等を目指しています。

プラズマを使用する利点

  • 水を使用しません。
  • 化学活性種が有機物を分解するため、機能性改善のみでなく殺菌消毒・洗浄効果も併せ持ちます。
  • 無毒なガスを使いますので、有害物が対象物に残留する心配がありません。
  • ポストハーベスト処理により、農産物の長距離輸送が可能となります。

使用するプラズマ

誘電体バリア放電プラズマ装置:(左)平板型(右)円筒型
低気圧高周波放電プラズマ装置

大気圧誘電体バリア放電(DBD)プラズマ(左図)または低気圧RF放電プラズマ(右図)を用います。DBDプラズマは、装置の構造が簡単である上に様々な形の電極を作ることが可能であり、かつ安価にプロセスを行うことができます。プラズマが小さな空間のみに生成されるため、種子にプラズマが効率よく照射されるように電極を設計することが重要です。一方、低気圧RF放電プラズマは、大容積のプラズマ生成が可能であるため、多数の種子を一度に処理するのに適しています。ガスの種類や圧力も変更できるため、自由度の高いプラズマ生成が可能です。

これまでの研究成果の例

大気圧誘電体バリア放電プラズマ装置を用いて、リーフレタスの種子にプラズマを照射し、一定の温度・湿度下で水耕栽培を行った例を示します。あるプラズマ照射条件下では、葉の長さが、プラズマを照射していないものよりも3日ほど早く収穫目安(葉の長さが約10cm)に達することができました(上図)。

また、播種後30日目に収穫を行い抗酸化性能を測定したところ、プラズマを30分照射したものが、照射していないものと比べ高い抗酸化性能を示す様子も見られました(下図)。

まとめ

  • プラズマを種子や野菜、食品の表面に照射することで、成長の促進、機能性の向上、 滅菌・殺菌・消毒、食品の鮮度保持への効果が期待されます。
  • この技術は医療用器具の滅菌や、物質の表面改質も可能です。
  • プラズマを用いた本技術は、人と環境に優しい技術です。

研究者INFO: 工学部 電気電子システム工学科 プラズマ物性工学研究室 眞銅雅子 准教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 植物工場
  • 生体素材
  • 関連性理論
  • 機械学習
  • AI(人工知能)
  • コミュニケーション支援
  • プログラミング教育
  • 画像修復
  • 都市計画
  • 再生可能エネルギー
  • 光物性
  • アーカイブ研究
  • 景観
  • 遺伝的アルゴリズム
  • 細胞老化
  • ワークショップ
  • 制御工学
  • 地盤防災
  • ごみ処理
  • くずし字

すべてのキーワードを見る

同じカテゴリーの研究シーズ

石道 峰典

生体の筋機能の改善に向けたアクアポリン4による水分代謝の制御法の開発

骨格筋は水分含有量が約8割であり、水分を豊富に含んだ組織です。骨格筋を構成する筋線維(筋細胞)でのスムーズな水分代謝により筋の恒常性が保たれることから、骨格筋における水分代謝を制御する水分子輸送機構は、健康的で活動的な日常生活を維持するうえでも非常に重要となります。 現在、本研究室では、骨格筋における筋機能の維持・改善やサルコペニア予防など目的に応じた水分代謝の制御を実現するために、水分子輸送機構の主要タンパク質の1つであるアクアポリン4 (AQP4)の生理学的特性の利用法の開発を目指しています。

神村 共住

光学材料のレーザー損傷耐性の非破壊3次元イメージング技術

高レーザー損傷耐性で均質な光学材料の供給が産業用レーザーシステム、半導体露光装置等の性能、信頼性の向上に緊急で不可欠な課題となっている。本技術は、これまで開発してきた基本評価技術にさらに評価用レーザー光源の安定化を図ることで2光子吸収からレーザー損傷耐性を非破壊で高精度計測することを可能にしている。これにより各種光学材料のレーザー損傷耐性を非破壊で3次元イメージング可能な品質評価技術として確立している。

平井 智康

高分子の精密合成法とその界面構造制御

立体規則性を精密に制御した有機ー無機からなるプラスチック材料を精密重合法に基づき調製した。今回開発した高分子はキラル分子を認識し、螺旋構造を形成することを見出した。また、その螺旋構造はキラル分子を取り除いた後も保持されることも明らかとなり、キラル分離膜を始めとする医療材料への応用展開が期待される。

西脇 雅人

一過性および定期的な運動あるいは食品摂取の臨床試験的側面からの効果検証

一過性(急性の応答)および定期的(慢性の適応)な運動・身体活動の実施、あるいは食品摂取の実施をヒトを対象として実施し、UMIN-CTRなどに臨床試験登録を行った上で効果検証を行える。特に、血圧脈波検査装置を用いた動脈壁硬化度(いわゆる血管年齢)の評価、超音波エコーを用いた血管内皮機能の評価や各部位の血流量・血管径の評価、体格、筋力、柔軟性、歩行能力、有酸素性運動能力(最大酸素摂取量)、最大無酸素性パワーなどの評価、低酸素環境下への応答性と運動実施能力の評価、血中物質濃度(医療従事者との連携)の評価、客観的な身体活動や外出状況の評価が実施できる。

吉田 準史

音を下げる。そして、音を活かす。

我々の周りには声や楽器、飛行機の音など様々な音があります。同じ音でも心地よい音もあれば騒音もあります。製品音は騒音と捉えられやすい音ですが時には、製品の状態を知る有効な手がかりになります。このことを踏まえ我々は製品音に着目し、その音全てを低減対象とせず、必要な成分と下げるべき成分に分別しようとしています。下げる音には、そのメカニズムを的確に把握する技術を構築しています。そして必要な音に対しては、その音を選び出し状態認知を手助けする方法も検討する等、音が持つ可能性を踏まえた技術開発を進めています。

大森 勇門

発酵食品中のアミノ酸分析

アミノ酸にはL体、D体と呼ばれる光学異性体が存在します。長年、我々ヒトはD-アミノ酸を利用しないと考えられてきました。しかし分析技術の発達に伴い、D-アミノ酸がヒトの生体内で重要な機能を有していることが明らかになってきました。またD-アミノ酸を用いて食品の呈味性や生理機能を向上させた商品も開発されています。我々の研究室ではD-アミノ酸の食品利用を目標に、発酵食品や食品に関係する微生物中のアミノ酸解析を進めています。

古崎 康哲

嫌気性消化(メタン発酵)

研究者が扱うバイオマスは、下水汚泥、生ごみ、である。 リアクタの小型化に資する前処理技術を研究している。 生ごみについて、でんぷん質が多い場合に有効な前処理として、「バイオエタノール化」を行い、メタン発酵リアクタに投入するシステムを提案している。 バイオガス中メタン濃度向上、汚泥生成量削減、分解率向上、高負荷運転の達成、などの効果を確認している。

井上 晋教授,大山 理教授,三方 康弘教授,今川 雄亮講師

大型供試体による橋梁の性能評価

 八幡工学実験場は,大阪工業大学が,学内の教育・研究活動の活性化のみならず,産・官・学の各方面との交流により社会や技術の発展に寄与することを目的として設立されたものです.本実験場は,1986年12月に構造実験センターとしてそのスタートを切り,その後,水理実験センター,高電圧実験センターを併置して今日に至っています.広大な実験場の敷地内には特色ある各種の大型実験設備・装置が設置されており,これらは実験場設立の趣旨にしたがい,学内の教育・研究はもとより,学外の関係各方面との綿密な連携のもとに行われる各種の委託研究や共同研究に役立てられています.また,このような学外との交流は実験場で学ぶ学生にとって貴重な体験となっています.
 ここでは,構造実験センターに設置されている主な実験設備・装置を紹介するとともに,その設備・装置を用いて取り組んでいる研究について紹介します.

笠原 伸介

低濁度原水の薬注撹拌制御に関する研究

近年、活性炭処理水など凝集性粒子をほとんど含まない低濁度水を対象にPACl注入を行い、急速砂ろ過を運用する事例が増加している。このような状況では、連続的に流入する凝集フロックではなく、突発的に流入する非凝集性粒子への対応を意図した運用、すなわち濁質捕捉効果の高いAl集積層をろ層内に速やかに形成することが重要と考えられる。 本研究では、急速ろ過層が有する固液分離の仕上げ機能を最大限に引き出すための凝集操作要件を明らかにするため、薬注後のGT値がAl集積層の形成と非凝集性粒子の阻止率に及ぼす影響を検討した。

藤本 哲生

コンクリート表面遮水壁型ロックフィルダムの耐震性能評価手法の確立に向けた研究

 都市デザイン工学科の地盤領域(地盤防災研究室、地盤環境工学研究室)では,近年多発する豪雨や来たるべき巨大地震により山腹斜面や土構造物が崩壊する危険度を予測・評価するためのさまざまな研究を行っています.このうち,コンクリート表面遮水壁型ロックフィルダムの耐震性能評価手法の確立に向けた研究を紹介します.

吉田 恵一郎

誘電体を用いたすすの静電捕集とプラズマ分解

エンジン等の燃焼排ガスに含まれる「すす」を除去するには,多孔質セラミックのフィルタが用いらせますが,すすの蓄積とともに圧力損失が上昇します.  一方,静電集じん技術は,帯電させた微粒子を静電引力で気流から取り除くため圧力損失が極めて低いものの,導電性の高いすすの場合,再飛散しやすいという問題があります.  本申請技術は,コレクター部に誘電体を用いることで,フィルタレスで高効率に集塵を行い,同時に,誘電体上で低温プラズマによって酸化分解まで行うことが可能です.

吉村 勉

高速通信用発振器の相互干渉解析と自動補正に関する研究

近年の高速・高密度の大規模集積回路において,内蔵する発振器の性能がクロック同期系デジタル回路の処理速度に大きな影響を与える。そこで問題となるのが複数の発振器間の相互干渉である。私たちは今まで発振器の干渉ノイズのモデル化およびその実証と,位相同期回路における干渉ノイズの影響について研究してきた。特に完全同期にある発振器間の相互干渉において,小規模の補正回路でその影響を低減する手法を考案し,いくつかの知見を独自に得ている。本研究ではその知見をさらに一般的な凖同期の相互干渉の低減に適用し,今までにない新しい手法での相互干渉の影響削減の提案を行いたいと考えている。

舩本 誠一

医療素材を作製するために必要な色々な技術開発

医療用素材の中で特に移植や生体と接触する生体材料において、動物の組織を利用するための加工技術として脱細胞化技術が近年注目されています。脱細胞化された生体組織は様々な場所で用いられています。加えて、組織の保存法やこの組織を異所性に用いることで得られる有効性などを引き出すための組織の加工技術など周辺技術の開発もまた盛んにおこなわれております。

福原 和則

丘のある住まい

多くの世帯の生活の舞台となる「集合住宅」は自ずと大規模な開発になることが多く、まとまった豊かな環境を形成することが可能である。住まいとなる住棟の設計と合わせて、その広がりを生かした豊かなランドスケープデザインを展開することで、戸建て住宅地では成しえない環境を形成できる。

上野 未貴

創作者の表現を計算機に学習させる

漫画・写真・小説などの創作物を創り,読み解く過程のデータを収集し,人工知能分野で拡がる画像処理・自然言語処理・機械学習・人とコンピュータ間の対話的なシステム開発に基づき,創ることを支援する研究を進めています.

福島 拓

話者の意図を適切に伝達可能な多言語間対話支援手法

医療従事者と外国人患者の間の対話支援を目的とした,多言語対話支援手法について述べる.医療現場において母語が異なるために意図の伝達が円滑に行えない問題を解決するために,用例対訳と機械翻訳を併用した多言語間対話支援技術の開発を行っている.本技術では,用例対訳や回答候補などの概念を用いて正確な意図の伝達を支援している.

中山 学之

生体の運動制御メカニズムを取り入れた人と親和性の高い介護支援ロボット

人間の神経系や筋骨格系の構造は長い進化の過程で日常生活を行うのに適した形に最適化されてきたものと考えられています。本研究では進化の過程で生物が獲得してきた運動制御メカニズムをロボットに取り入れることにより,動力を使用せずに人やモノの自重を支持できる機械式自重補償装置や,脳の運動制御メカニズムを取り入れた環境適応制御,小脳-大脳基底核をモデル化したニューラルネットワークによる予測的な環境認識・最適行動生成を実現する研究を行っています。

中村 吉伸

シランカップリング剤によるエポキシ樹脂の高性能化

 超LSIの封止樹脂は,エポキシ樹脂にシリカ粒子が分散されており,界面の接着による高強度化や吸水率低減の目的でシランカップリング剤も加えられている。発表者らは,以下の比較からさらに高性能化できるシランカップリング剤の構造と使用方法を明らかにした。1)前処理法とインテグラルブレンド法  2)構造:界面結合型と疎水化型  3)界面の結合とマトリックスの改質  今後,自動車組立はエポキシ樹脂による接着が主流になるが,この高性能化にも応用可能である。

福原 和則

イノベーションを誘発するワークプレイスの設計

製品開発を行うワーカーのための新しい環境を構想するにあたっては、単なる「箱モノ」の設計を超えたプロセスを共有することが重要である。場としての環境を設計する行為を会社やチームそのものを設計する行為であるととらえ、時には「デザイン思考」の方法論を取り入れて検討をおこなうと有効である。内容の検討に加えてプロセスも合わせてマネージメントすることが求められる。

藤里 俊哉

培養筋肉を用いた健康科学研究

組織工学・再生医療技術を用いて、体の外で骨格筋を作製することに成功しました。 この人工骨格筋は、長さ約15mm、直径約0.5mmと小さなサイズですが、電気刺激によって、人間の筋肉と同様の収縮運動させることができます。 最近、運動が健康に良いのは、骨格筋が作るマイオカインと呼ばれる物質によることが分かってきました。マイオカインは認知症の予防やがん予防にも効果があるとされています。 この人工骨格筋を運動させることでマイオカインをたくさん作らせることが可能だと考えています。

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail