logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • プロセッサ
  • モスアイ構造
  • 著作権保護
  • 耐震設計
  • 緑化
  • 超分子
  • 楽曲検索
  • 導電性ポリマー
  • 維持管理
  • active tension
  • 数論
  • ユーザインタフェース
  • 結晶塑性有限要素法
  • 酵素固定化
  • 意匠権
  • 海洋沿岸生態系
  • ノシスタチン
  • RoF
  • 安全保障
  • 手術ロボット

すべてのキーワードを見る

ホーム溶液塗布熱分解法を用いた酸化物半導体・誘電体薄膜の作製
SDGsの分類
研究テーマ
ナノ・材料
学科の分類
工学部電子情報システム工学科ナノ材料マイクロデバイス研究センター

溶液塗布熱分解法を用いた酸化物半導体・誘電体薄膜の作製 非真空プロセスによる高品質薄膜の作製

工学部

電子情報システム工学科

半導体ナノシステム研究室

矢野満明 教授

共同研究者

小池一歩
和田英男
佐々誠彦
溶液塗布熱分解法酸化物半導体薄膜酸化物誘電体薄膜

 次世代電子デバイスに欠かせない酸化物半導体や酸化物誘電体は、スパッタリングなどの物理堆積法や化学気相堆積法を用いて作製されてきました。これらの方法は、成膜プロセスに真空を必要とする所謂「真空プロセス」です。しかし、酸素が不純物とならない材料であることから、装置コストやユーティリティコストが大幅に節約できる「非真空プロセス」でも高品質膜を作製できる可能性があります。当研究室では、代表的な非真空プロセスである「溶液塗布熱分解法」で酸化物半導体薄膜や酸化物誘電体薄膜を作製する方法を研究しています。

従来の半導体・誘電体薄膜の作製方法

 半導体や誘電体の薄膜は、加熱された原材料からの蒸気を基板表面に堆積させる真空蒸着法(図1)、放電によるスパッタリング法、ガス状の原料化合物を基板表面で反応させる化学気相堆積(CVD)法などで作製されてきました。

 しかし、いずれの方法も成膜室を真空にするためのポンプや大気圧に耐える密閉容器が必要で、装置の大型化やユーティリティコストの上昇といった問題を抱えていました。この問題の解決は、スマートウィンドウ(電子調光窓ガラス)やフラットパネルディスプレイといった大面積デバイスや、使い捨てが要求される医療・介護機器用センサーの作製に際して特に重要となっています。

図1 真空蒸着法
図1 真空蒸着法

溶液塗布熱分解法による酸化物薄膜の作製方法

 近年注目を集めている酸化物半導体薄膜や酸化物誘電体薄膜では、構成元素に酸素を含むため雰囲気からの酸素混入が汚染となりません。このため、スプレー法や溶液塗布熱分解法(Cemical Solution Deposition)ならびにミストCVD法など、成膜室を真空にしない所謂「非真空プロセス」でも作製が可能です。

 溶液塗布熱分解法はスピンコーティングやディッピングで基板表面に塗布した原料塗膜を高温で焼成する方法で、図2はスピンコーティング溶液塗布熱分解法の基本的な成膜プロセスを示しています。

 筆者や共同研究者らはワイドギャップ半導体膜、金属・絶縁体相変化膜、高誘電率・強誘電体膜など、様々な金属酸化物薄膜をスピンコーティング溶液塗布熱分解法で作製しています。ここでは、当研究室で行ったワイドギャップ半導体のWO3と強誘電体薄膜のHfZrO2について紹介します。

図2 スピンコーティング溶液塗布熱分解法

酸化タングステン薄膜の場合

 酸化タングステン(WO3)は約2.8 eVのバンドギャップエネルギーを有するワイドギャップ半導体で、その薄膜はエレクトロクロミック特性を利用したスマートウィンドウや相変化型メモリー、ガスセンサーなどへ応用されています。従来は、真空蒸着法やスパッタリング法で作製されてきました。

 当研究室では、塗布溶液としてメタタングステン酸アンモニウムとポリビニルアルコールの水溶液を用い、基板にスピンコーティングした塗布膜を、大気中で100℃・10分間加熱して乾燥させた後、大気中で2時間焼成して約50 nm厚のWO3薄膜を得ました。膜表面の平均2乗(RMS)粗さは1 nm程度でした。

 図3は焼成温度とX線回折(XRD)パターンの関係で、600℃焼成によってorthorhombic構造に結晶化したWO3薄膜が得られていることがわかります。

 図4は焼成温度とラマン散乱スペクトルの関係で、焼成温度が低いと膜中に有機物が残留しますが、600℃焼成では残留有機物の無い純粋なWO3薄膜となることがわかります。

図3 WO3薄膜のXRDパターン
図4 WO3薄膜のラマン散乱スペクトル

 図5は、ガラス基板上に成膜した厚さ45 nmの薄膜の、プロトン注入量と着色度ΔODの関係です。この結果から求めた着色効率は、波長650 nmにおいて68 cm2/C、1070 nmにおいて115 cm2/Cとなっています。これらの値は、蒸着法やスパッタリング法で作製したWO3膜の着色効率と遜色ありません。

 図6は、プロトン注入前後の光透過特性です。注入前は可視光領域で高い透明性を示し、近紫外領域にバンドギャップに対応する吸収端が見られました。注入後には赤色から近赤外領域にかけて大きな吸収が現れ、目視でもHxWO3の生成に伴う青銅色の着色が確認できました。プロトンを注出すると着色前の状態に戻り、着色と脱色は繰り返して操作できました。なお、図6の結果は膜厚が薄いので注入後の着色度が低いですが、EC素子として通常用いられている250 nm厚の試料では、波長650 nmにおける透過率が初期値の数%以下になることを確認済みです。

図5 プロトン注入による着色度の時間変化
図5 プロトン注入による着色度の時間変化
図6 プロトン注入前後の光透過特性
図6 プロトン注入前後の光透過特性

 図7は、アルミナ基板上に成膜したWO3薄膜の表面に櫛型電極を形成した、抵抗変化型ガスセンサーの構造図です。このセンサーを300℃に保って密閉容器に入れ、容器に各種被検ガスを導入したときの抵抗変化を調べました。

 図8はその結果で、横軸は被検ガスの濃度(乾燥空気希釈)、縦軸は被検ガス導入前後の抵抗比で、負側の縮尺を正側の10倍にして示しています。WO3ガスセンサーは、水素やアンモニアガスに対してあまり反応しませんが、一酸化窒素(NO、空気中では速やかにNO2に変化する)に対して非常に大きな感度を有することがわかりました。

図7 ガスセンサーの構造
図7 ガスセンサーの構造
図8 ガス検出特性

酸化ハフニウム薄膜と酸化ジルコニウム薄膜ならびに酸化ハフニウムジルコニウム薄膜の場合

 酸化ハフニウム(HfO2)薄膜はSi集積回路のhigh-k(高誘電率)絶縁膜や高強度レーザー用光学部品の保護被膜として利用されています。最近ではorthorhmbic構造の薄膜が強誘電特性を示すことが見いだされ、DRAMに替わる次世代メモリーの有力な候補材料として注目を集めています。

 HfO2のorthorhombic構造は準安定相であるため、通常は安定相ののmonoclinic構造(常誘電体)となってしまいます。しかし、tetragonal構造を安定相とする酸化ジルコニウム(ZrO2)と混晶化させると、幅広い組成比範囲でorthorhombic構造が安定となって強誘電体薄膜を得ることができます(図9参照)。

 このため、HfO2とZrO2の組成比が等しいHf0.5Zr0.5O2(HZO)混晶薄膜の強誘電特性が各所で精力的に研究されています。しかし、そのほとんどは真空プロセスである原子層堆積(ALD)法あるいはスパッタリング法で作製された膜を用いています。

図9 結晶構造と誘電特性
図9 結晶構造と誘電特性

 本研究では、塗布溶液として、塩化ハフニウムと塩化ジルコニウムを溶かしたエタノールを硝酸水溶液と混合・加熱して作製した、アルコキシド水溶液を用いました。基板上にスピンコーティングした塗布膜を大気中で150℃・10分間加熱して乾燥した後、窒素中あるいは酸素中で20分間の高温焼成して厚さ18nm程度の薄膜を得ました。

 図10は、Si基板上HZO薄膜の、透過電子顕微鏡(TEM)で観察した断面と、原子間力顕微鏡(AFM)で観察した表面です。TEM画像から、薄膜は原子が規則正しく配列した結晶粒から構成され目立った空隙や析出物が無いことがわかります。AFM画像から、表面は非常に平坦で(RMS粗さが0.3 nm)割れや凹凸のない均一な薄膜であることがわかります。

 図11は、サファイア基板上HZO薄膜のX線反射(XRR)パターンで、実線が測定値、破線が図中に示した膜厚・密度・粗さを仮定したときの計算値です。密度はHfO2膜とZrO2膜の平均値とほぼ一致しており、組成比0.5のHZO膜が得られていることがわかります。また、大面積にわたって均一かつ平坦であることもわかります。

 図12はサファイア基板上HZO薄膜の光透過特性で、スピンコート溶液塗布熱分解法で作製した同じ膜厚のHfO2薄膜とZrO2薄膜、ならびにサファイア基板の光透過率と比較しています。いずれの薄膜の透過率曲線も可視光部に目立った吸収が無いことから、不純物の少ない高純度膜が得られていることがわかります。250 nm近辺における透過率の急激な減少はバンド端吸収によるもので、減少の速さはそれぞれの薄膜のバンドギャップエネルギー差(HfO2:5.6 eV>HZO>ZrO2:5.3 eV)に対応しています。

図10 HZO薄膜の断面TEM像(左)と表面AFM像(右)
図11 HZO薄膜のXRRパターン
図12 サファイア基板上のHZO薄膜、HfO2薄膜、ZrO2薄膜の光透過特性

 図13は、窒素中あるいは酸素中で、温度を変えて焼成したHZO薄膜からのXRDパターンです。焼成前(乾燥後)の膜は回折ピークが観測されないアモルファス状態ですが、焼成後は明瞭な回折ピークが出現する多結晶膜となっています。

 ただし、窒素中で焼成した場合は強誘電体のorthorhombic構造が支配的な膜となりますが、酸素雰囲気で焼成した場合は常誘電体のmonoclinic構造になっています。この結果から、orthorhombic構造の強誘電体HZO薄膜を得るためには、窒素雰囲気で600~700℃の焼成が好ましいことがわかりました。

 なお、膜厚が増加すると、窒素中で焼成してもmonoclinic構造が出現するようになり、25 nmを超えるとmonoclinic構造の方が支配的となります。ただし、塗布と焼成を繰り返して形成した場合は、100 nmを超える膜厚でもorthorhombic構造が支配的な膜が得られることも明らかになっています。

図13 HZO薄膜のXRDパターン。(a)は窒素中、(b)は酸素中で焼成した場合

おわりに

 当研究室で行っているスピンコーティング溶液塗布熱分解法を用いた酸化物半導体と酸化物強誘電体薄膜に関する研究の一端を紹介しました。この成膜方法は非真空で金属酸化物薄膜を作製する代表的なプロセス技術として、今後さらに重要度が高まると思われます。

 当研究室においては、ここに紹介したWO3薄膜やHZO薄膜のみならず、例えば最近次世代ワイドギャップ半導体として注目を集めるGa2O3などへ成膜技術を拡張するとともに、得られた薄膜の応用についても検討を進める予定です。

論文

「液相薄膜堆積法ー塗布法ー」(2020)矢野満明 ほか2名『2020年版 薄膜作製応用ハンドブック(權田俊一編),エヌ・エス・ティ―』p.477-483.

「溶液塗布熱分解法で作製したHf0.5Zr0.5O2薄膜の特性評価」(12019)矢野満明 ほか6名『材料』68p.745-750.

「Gas sensing characteristics of a WO3 thin film prepared by a sol-gel method」(2018)YanoMitsuaki et al.『Proceedings 2018』2p. https://doi.org/10.3390/proceedings2130723 .

研究者INFO: 工学部 電子情報システム工学科 半導体ナノシステム研究室 矢野満明 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 結晶塑性有限要素法
  • 酵素固定化
  • 数論
  • プロセッサ
  • ノシスタチン
  • 手術ロボット
  • 海洋沿岸生態系
  • 導電性ポリマー
  • 意匠権
  • 緑化
  • 耐震設計
  • 楽曲検索
  • 安全保障
  • active tension
  • モスアイ構造
  • 著作権保護
  • ユーザインタフェース
  • 維持管理
  • 超分子
  • RoF

すべてのキーワードを見る

同じカテゴリーの研究シーズ

瀧川 宏樹

英国ヴィクトリア朝の文学作品における男性像の研究

本研究では、英国ヴィクトリア朝の男性表象の探求をテーマとしている。当時、男性は女性と比較して、社会的に優遇された立場にあった。そのため、これまでの研究では、社会的に冷遇されていた女性に焦点を当てたフェミニズム研究が盛んに行われてきた。 ところが、昨今のジェンダー研究においては、社会的に優遇されている男性もまた、社会が求める理想的な男性像に苦悩しているのではないかという視点が確立されている。男女平等を確立し、女性が生きやすい社会を作ることは言うまでもないが、男性も生きやすい社会を目指してこそ、真のジェンダー平等の達成と言える。 ブランウェル・ブロンテの作品における男性表象に着目し、そこから見えてくる理想的な男性像と、ブランウェル・ブロンテが実人生で直面した現実の男性の生き様との間の齟齬を探りだすのが、本研究の目標である。

酒澤 茂之

学習済みディープニューラルネットワークモデルの権利保護に関する研究

学習済みディープニューラルネットワーク(DNN)モデルの権利保護のために、電子透かしをモデル内へ埋め込む技術が注目されている。本研究では、画像分類型DNNモデルを対象とし、その内部パラメータは観測できず、入力画像と出力ラベル値のみが観測できる場合でも、そのDNNモデルを学習させた著作権者の情報を視覚的に取り出すことを実現する。

神田 智子

ユーザの視線行動に適応した エージェントの視線行動の開発と評価

シャイな人間は対話相手の視線に敏感であり,注視されることを嫌うということが示されている.本研究は実験参加者の視線行動に適応するエージェントの視線行動の開発と評価を目的とする.具体的には,対話中のユーザの視線行動をアイトラッカーで取得し,過去15秒間にユーザがエージェントの目を注視していた割合を基に対話エージェントがユーザの目を注視する割合を適応させ,ユーザと類似した凝視量を保ちながら視線行動をとる対話エージェントを開発した.評価実験では,シャイなユーザグループに対話のストレスの軽減効果および対話エージェントへの親近感の向上効果が見られた.

大島 一能

IoTとAIを活用したネットワークデザイン手法

 情報通信ネットワーク研究室では、IoTネットワーク技術や機械学習、AIを活用したネットワークデザイン手法の研究に取組んでいます。本サイトでは次の各テーマの概要を説明させて頂きます。 (1) 深層学習を活用した屋内位置検出: GPSなどの電波受信が難しい屋内で位置情報を利用するサービスの需要が拡大しています。BLE の電波強度(RSSI)を深層学習により分析して位置検出を行う手法を研究しています。 (2) AIを活用した局地的豪雨予測方式: 降雨観測レーダや雲画像等の気象データを活用した局地的豪雨の予測方式を研究しています。 (3) その他の研究課題: IoT と AI を活用したドローン自律制御方式や可視光LED通信の応用システム等も進めています。

大谷 真弓

「その人らしさ」の表現を目指す

人の「その人らしさ」は、様々な形で表現されます。摂食障害等のこころの病は、その人の「生きづらさの表現」だという視点でも捉えられますが、他方で、芸術活動にその人の表現を載せることで、そこに表われてくるものを、「生きづらさの表現」としてではなく、まさに「その人らしさ」が表われているのだ、という視点から捉えることも可能です。本研究では、「その人らしさ」が芸術活動(本研究では陶芸活動)の中で表現されているという視点から、陶芸活動を視ています。その上で、「その人らしさ」がいかに表われてくるのか、いかに変化していくのかを追い、どのような表現をすることが「生きづらさ」からの脱却へとつながるのか明らかにし、実践につなげます。

外波 弘之

フェノールポリマーの合成とその機能性評価

 近年,酵素触媒をプラスチックなどのポリマー合成に利用する方法が注目されている.これは酵素触媒の有する次のような特徴を活用しよ うというものである.1,高い触媒活性 2,基質特異性 3,生分解性 4,穏和な条件下で機能.本研究では,このような酵素触媒の特徴を活かし,主として西洋ワサビ由来のペルオキシダーゼ(HRP)を触媒としてフェノール類を重合させる.生成するフェノールポリマーについて,抗酸化性などの機能性評価を行う.

又吉 秀仁

都市環境における風車の継続運転システム

垂直軸型風車はヨー制御、ピッチ角制御を行わないシンプルな構造と低騒音という特徴から都市環境における運用が関心を集めている。しかし、水平軸(プロペラ型)風車の10倍以上の慣性をもつ垂直軸風車は、都市部のような低風速かつ断続的な風況下での運転が困難である。そこで風車の回転速度の維持に重点を置き、低風速下でも連続的な発電を可能とするシステムを開発した。

辻田 勝吉

宇宙機の地上試験用重力補償ロボットシステムの開発

宇宙機用の展開構造物は、地上施設にて展開挙動の性能評価が義務づけられている。近年の宇宙機は大型化、多様化が進む一方、我が国の地上試験施設は過密スケジュールに加えて、試験に要する人件費の増加が宇宙計画の一つのボトルネックになっている。本研究では、下方支持型群ロボットシステムを用いて宇宙機の展開構造物の挙動試験時の重力補償、および挙動の精密計測を実現することを目標とする。これにより、多様化する宇宙機の試験には群ロボットシステムの規模変更のみで対応でき、コスト削減と高い汎用性が期待される。

川田 進

アジアの宗教紛争・民族問題と安全保障

1991年以降、中国、インド、ネパール、ミャンマー、カンボジア、ラオス、タイ等で、宗教問題や民族紛争に関する現地調査を継続してきた。主要なテーマは「チベット問題」と「イスラーム紛争」である。「宗教NGO」という視点から、穏健な「宗教ネットワーク」「民族コミュニティ」形成の糸口を明示し、紛争解決の有効な方策を提示する。日本社会が抱える弱点の一つは、「民族問題やイスラーム社会への理解不足」である。一連の研究が、テロ事件の背景や海外在住邦人の安全確保など、日本の安全保障及び民間企業・個人が海外で活動する際の安全確保に資することを目指す。

石道 峰典

生体の筋機能の改善に向けたアクアポリン4による水分代謝の制御法の開発

骨格筋は水分含有量が約8割であり、水分を豊富に含んだ組織です。骨格筋を構成する筋線維(筋細胞)でのスムーズな水分代謝により筋の恒常性が保たれることから、骨格筋における水分代謝を制御する水分子輸送機構は、健康的で活動的な日常生活を維持するうえでも非常に重要となります。 現在、本研究室では、骨格筋における筋機能の維持・改善やサルコペニア予防など目的に応じた水分代謝の制御を実現するために、水分子輸送機構の主要タンパク質の1つであるアクアポリン4 (AQP4)の生理学的特性の利用法の開発を目指しています。

林 茂樹

知的財産学部シーズ一覧

知的財産学部所属教員の研究シーズ一覧です.

平井 智康

高分子の精密合成法とその界面構造制御

立体規則性を精密に制御した有機ー無機からなるプラスチック材料を精密重合法に基づき調製した。今回開発した高分子はキラル分子を認識し、螺旋構造を形成することを見出した。また、その螺旋構造はキラル分子を取り除いた後も保持されることも明らかとなり、キラル分離膜を始めとする医療材料への応用展開が期待される。

羽賀 俊雄

高速ロールキャスターによるアルミニウム合金板の鋳造

ロール周速30m/min以上,冷却速度2000℃/s以上でアルミニウム合金板が鋳造可能な双ロールキャスターと単ロールキャスターの開発を行ってきた.溶湯から直接薄板の高速鋳造が可能であるため,省工程・省エネルギーの利点がある.また,高い冷却速度によりリサイクル材に含まれる金属間化合物を微細粒状化し,不純物を部外化することができる.つまりアップグレードリサイクルが可能になる.また,中心線偏析は,双ロールキャスターに特徴的な欠陥であるが,これを解決するためにスクレイパーを装着した単ロールキャスターを開発した.

向出 静司

想定を超える大地震下における鋼構造建物の倒壊余裕度の向上

建築基準法の想定を超える大地震に対して,建築物は耐力を保持できる変形域を超えて耐力劣化し,倒壊する懸念がある.本研究者は,一般的な鋼構造ラーメン骨組を対象に,(1)超大変形域に至るまでの構成部材の破壊実験を通じて,その耐力劣化性状を把握すること,(2)超大変形域の挙動を考慮した建物全体の地震応答解析により,その倒壊性状を把握すること,(3)倒壊メカニズムに基づいた倒壊余裕度の評価方法を提案すること,などを実施している.

小山 政俊

分極デバイス応用を目指した酸化ガリウム薄膜の研究

ワイドバンドギャップ半導体としてパワーデバイスや深紫外線検出器への応用が期待される酸化ガリウム薄膜に注目しています。特に準安定相構造の一つである ε 相の酸化ガリウムは自発分極による分極デバイスへの応用が期待されます。準安定相の成膜に適した手法であるミストCVD法を用いた高品質な薄膜の成膜とそのデバイス応用を検討しています。

林 暁光

高力ボルトを用いた鉄骨部材接合部の性能評価

従来の鉄骨構造の接合部設計では、剛接合とピン接合のどちらかで設計されている。本研究は高力ボルトと接合金物を用いた接合部の実態を剛接合でもピン接合でもないグレーゾーンの接合部として捉え、ありのままの姿で半剛半強の接合として検討している。具体的には耐震設計で必要とされている接合部力学性能指標のうち、接合部の初期剛性や耐力、復元力履歴特性およびエネルギー吸収能力の評価精度の向上を目指している。

小西 将人

実行不要な命令を動的に排除する効率的なプロセッサ

プロセッサの命令実行の効率性を妨げる要因の1つとして,ロード命令の実行にかかる時間が大きいことが挙げられる。この研究の目的は,不要なロード命令の一部を動的に排除(スキップ)するようなプロセッサの構成を提案し,命令実行の効率性をあげようとするものである。予備評価によりおおよそ15%程度のロード命令がスキップできる可能性があり、プロセッサ全体の性能を向上させることが期待できる。

藤井 秀司

液体の粉体化技術に基づく機能性材料の創出

コロイド次元に存在する高分子粒子は、接着・粘着、塗料分野においてフィルム形態にして広く利用されている。近年、高分子粒子の粒子径、粒子径分布、表面化学、形状のコントロール技術の発展の恩恵を受け、大きい比表面積、分散状態における適度な運動性を活かした粒子形態のままでの利用にも関心が集まり、学術、工業両分野において精力的に研究が進められている。さらに、コロイド次元にある高分子粒子は、粒子間力、界面自由エネルギー、媒体の流れを駆動力とする自己組織化、すなわち自律的方法によって省エネルギー型の機能性材料の創出を可能にし、現行の重力支配下におけるエネルギー消費型の材料創出、すなわち他律的方法を見直す機会を我々に与えてくれる。 発表者は、界面自由エネルギーを駆動力とする粒子の自律的な界面吸着現象に注目し、高分子粒子の気液分散体の安定化剤としての利用を提案している。これまでに、粒子径、単分散性、形状、表面化学を精密にデザインした機能性高分子粒子を使用し、高分子化学、界面コロイド化学を学術基盤として、高分子粒子によるアーマードバブル、リキッドマーブル(LM)、ドライリキッド等のソフト分散体の安定化、構造評価および安定性制御に関する基礎研究を推進している。粒子の素材として高分子材料を利用することで、無機材料では導入が困難である、多様性に富む刺激応答性、低温での変形能、成型性、フィルム形成能の導入が可能になり、ソフト分散体を基盤とする新規機能性材料の開発につながると考えている。本発表では、気中液滴型気液ソフト分散体であるLMについて、発表者らが取り組んできた研究について紹介させていただく。

下村 修

一液型ロングライフ熱潜在性硬化剤の開発

一液型硬化剤として、保存安定性に優れ低温で硬化作用を持つアミン類をインターカレートしたリン酸ジルコニウムを合成した。これは高次に制御されたナノ空間内に配列したアミンを供することで、熱潜在性エポキシ樹脂硬化剤として利用できる。80℃以上に加熱することで樹脂硬化反応が高効率に促進し、作業時間短縮と省エネルギーに貢献しつつ、層状のリン酸ジルコニウム層間内への樹脂侵入による補強効果も一度に達成される利点を持つ。また、樹脂類とアミンの中から適当な配合処方の組み合わせにより硬化反応性の設計ノウハウを提供できる。

小谷 直樹

強化学習を用いたロボットの知能化

近年,人工知能・機械学習技術の発展もあり,これらの知能化技術をロボットの環境適応能力や自律性の付与の手段として用いることが期待されています.しかし,強化学習を含む機械学習は,一般的に多くの学習時間を必要とする根本的な問題を抱えています.従って,学習時間を短縮することが,実時間で学習する実ロボットにとって,特に解決すべき重要な課題です.私達は,遺伝的アルゴリズムの概念で説明した学習高速化手法を開発し,より高度なロボットの知能化の実現を目指しています.

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail