トモグラフィー画像の3次元可視化プログラムの作成
X線CTやMRIなどで撮影したトモグラフィー像(断層画像)の中から,注目領域だけを検出したり,立体構造を想像することは容易ではありません.画像処理技術や手法の応用により,注目領域のセグメンテーションとラベリング,立体構造の再構成を行い,三次元可視化するためのソフトウェアの開発に取り組んでいます.
学習済みディープニューラルネットワーク(DNN)モデルの権利保護のために、電子透かしをモデル内へ埋め込む技術が注目されている。本研究では、画像分類型DNNモデルを対象とし、その内部パラメータは観測できず、入力画像と出力ラベル値のみが観測できる場合でも、そのDNNモデルを学習させた著作権者の情報を視覚的に取り出すことを実現する。
論文
「10x10画素ロゴを表現可能な深層学習電子透かし方式」(2020)『信学技報』EMM2020-1p.1-6.
「Visual Decoding of Hidden Watermark in Trained Deep Neural Network 」(2019)『IEEE MIPR2019』p.371-374.
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム