logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • リキッドマーブル
  • テラヘルツ
  • 数理物理学
  • 色
  • 宗教施設
  • コンクリート
  • 植物自動監視
  • 建築構造
  • 化学工学&組織工学
  • 歴史的空間
  • ナノパターニング
  • X線画像
  • 分子動力学
  • 食品摂取
  • 弾性数理解析
  • 社会基盤
  • まちづくり
  • 電気インピーダンス
  • 経路探索
  • インターネット

すべてのキーワードを見る

ホーム絹フィブロインで酵素を固定化した拡張ゲート型バイオセンサー
SDGsの分類
研究テーマ
ライフサイエンス
学科の分類
工学部電子情報システム工学科ナノ材料マイクロデバイス研究センター

絹フィブロインで酵素を固定化した拡張ゲート型バイオセンサー

工学部

電子情報システム工学科

機能システムデバイス研究室

小池一歩 教授

共同研究者

矢野満明
バイオセンサー絹フィブロイン酵素固定化

市販MOSFETのゲート端子に絹フィブロインで酵素を包括固定した電極を接続した拡張ゲートFET型バイオセンサーを開発しています。体液に含まれる様々な健康指標マーカを長時間連続モニタリングできれば、病気の予防や早期発見に役立てることが可能です。これまで、拡張ゲート表面に生体適合の絹フィブロインを用いてグルコース酸化酵素を包括固定したところ、以下の結果が得られています。固定化する酵素の種類を選ぶことで検出対象を変えることができるため、本研究のセンサー構成や酵素固定化技術は汎用性が高いといえます。 ①センサーの性能が一ヶ月以上保たれた。 ②繰り返し、かつ、連続動作が可能であった。 ③血中に含まれるグルコースよりも二桁低い濃度(尿や唾液に含まれるグルコースのレベルに対応)を検出可能であった。 ④酵素膜に対してアルコール殺菌や60℃低温殺菌が可能であった。

論文

「Characteristics of an Extended Gate Field-Eect Transistor for Glucose Sensing Using an Enzyme-Containing Silk Fibroin Membrane as the Bio-Chemical Component」(2020)KoikeKazuto『Biosensors』10p.57 (pp.13).

「電界効果トランジスター型バイオセンサー応用に向けたスピンコート法によるフィブロイン薄膜の作製と特性評価」(2019)小池一歩『材料誌』68p.751~756.

「長鎖アミノシランを用いて酵素を固定化した拡張ゲート電界効果トランジスタのグルコース検出特性」(2019)小池一歩『電気学会論文誌E』139p.143-148.

研究者INFO: 工学部 電子情報システム工学科 機能システムデバイス研究室 小池一歩 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 経路探索
  • 宗教施設
  • 建築構造
  • ナノパターニング
  • 色
  • 電気インピーダンス
  • 食品摂取
  • 数理物理学
  • 歴史的空間
  • コンクリート
  • テラヘルツ
  • 植物自動監視
  • 化学工学&組織工学
  • 分子動力学
  • 弾性数理解析
  • X線画像
  • インターネット
  • まちづくり
  • リキッドマーブル
  • 社会基盤

すべてのキーワードを見る

同じカテゴリーの研究シーズ

清川 祥恵

「中世主義」ユートピア研究の展望

近年、英語圏では「中世主義」(medievalism)という思潮への注目が高まっており、専門書も相次いで刊行されている。本邦においては未だ耳慣れない語ではあるが、文学、とりわけフィクションにおける「中世」への愛着はあらゆる地域で目にすることができ、一定の普遍性を持つ。多様な事例に焦点が当てられている現状を踏まえ、「近代社会批判」の思想としての中世主義の歴史、および今後の展望について述べた。

橋本 渉

容易に構築できる球面ディスプレイ環境

球面型没入ディスプレイ環境構築をサポートするシミュレータを開発した.球面ディスプレイを作る際には,ドームスクリーンへの特殊な歪み補正を考慮した投影系の光学設計を行う必要がある.しかし,実際に製作される光学系はシミュレーション通りの精度が保証されるわけではない.使用する際に改めて光学系の微調整が必要となる.本研究では,投影系の光学設計と同時に,光学系の微調整や歪み補正が実行可能な投影シミュレータを開発している.

井上 晋教授,大山 理教授,三方 康弘教授,今川 雄亮講師

大型供試体による橋梁の性能評価

 八幡工学実験場は,大阪工業大学が,学内の教育・研究活動の活性化のみならず,産・官・学の各方面との交流により社会や技術の発展に寄与することを目的として設立されたものです.本実験場は,1986年12月に構造実験センターとしてそのスタートを切り,その後,水理実験センター,高電圧実験センターを併置して今日に至っています.広大な実験場の敷地内には特色ある各種の大型実験設備・装置が設置されており,これらは実験場設立の趣旨にしたがい,学内の教育・研究はもとより,学外の関係各方面との綿密な連携のもとに行われる各種の委託研究や共同研究に役立てられています.また,このような学外との交流は実験場で学ぶ学生にとって貴重な体験となっています.
 ここでは,構造実験センターに設置されている主な実験設備・装置を紹介するとともに,その設備・装置を用いて取り組んでいる研究について紹介します.

吉田 恵一郎

誘電体を用いたすすの静電捕集とプラズマ分解

エンジン等の燃焼排ガスに含まれる「すす」を除去するには,多孔質セラミックのフィルタが用いらせますが,すすの蓄積とともに圧力損失が上昇します.  一方,静電集じん技術は,帯電させた微粒子を静電引力で気流から取り除くため圧力損失が極めて低いものの,導電性の高いすすの場合,再飛散しやすいという問題があります.  本申請技術は,コレクター部に誘電体を用いることで,フィルタレスで高効率に集塵を行い,同時に,誘電体上で低温プラズマによって酸化分解まで行うことが可能です.

小林 弘一

レーダ画像からレーダ断面積とアンテナパターンが評価できる?!

電気長の非常に大きな物体のレーダ断面積、アンテナパターンの計測は困難を極めます。このため、物体近傍の散乱電磁界を計測し、逆合成開口による画像処理後、遠方電磁界を数学的に評価する方法を確立、提案しています。

廣井 富

手すりの上を移動する道案内ロボット

 本コミュニケーションロボットの特徴は、手すりの上を移動することである。ケータイや地図が読めない方でも問題なく、音声とジェスチャで指示してくれる。さらに人はロボットの手を握って誘導される。この時、ロボットの腕が伸び縮み可能なシステムを構築した。これにより、人の歩行速度に応じた無理のない道案内が可能である。本研究室でアルゴリズムを開発した「測域センサを用いた人検出システム」を応用しており、複数人が存在する環境内においても対象者を見失うことがなく、動作可能である。また、ロボットと案内される人の対話が破綻している場合等にオペレータが介入可能である。その介入頻度を簡易に制御可能であり、オペレータの負荷を軽減することが可能である。

福原 和則

都市の中で自然を感じる住まい

集合住宅の共用部分は可能性に満ちている。集住の規模が大きければ大きいほど相当規模の共用空間が出現する。住まいの立地や歴史性に合わせた物語をつくって、ライフスタイルを醸成する住む人に誇りと喜びを感じてもらえる空間を提供する。

宮部 正洋

熱流体機械の最適化設計手法の開発

熱流体機械を対象として数値流体力学(CFD)による最適化フレームワークを適用します。設計パラメータの最適な組み合わせを迅速に見つけ出す手法を提案します。手法の検証には3Dプリンタを用いて熱流体機械を製作し、性能試験、各種物理量の計測や流れの可視化を行い、現象や勘所を平易に解説します。

井原 之敏

多軸制御工作機械の加工精度向上

除去加工を行う工作機械は、機械の精度が悪いと加工方法や工具がどんなに良いものを使用しても加工されたものの精度はよくなりません(母性原則)。しかし、機械そのものの精度はあまり見えてこないのが実情です。特に多軸制御工作機械は機械そのものの精度を検査する方法も定まったものが存在しません。そこで私たちの研究室では機械の運動精度を検査する方法を提案し実施することでまず機械の精度を保証し、そのうえで加工方法について提案を行っています。

福原 和則

ローコストで可変性のあるイベント空間の創出

ダンボールを加工して構造体をつくります。この構造体を組み合わせて、建築の柱梁構造のようなフレームを構築して、簡易なイベント空間を創出します。ダンボールは安価で軽量で再生可能な材料です。自在に組み合わせて、イベント活動に合わせた会場設定が可能です。

福原 和則

イノベーションを誘発するワークプレイスの設計

製品開発を行うワーカーのための新しい環境を構想するにあたっては、単なる「箱モノ」の設計を超えたプロセスを共有することが重要である。場としての環境を設計する行為を会社やチームそのものを設計する行為であるととらえ、時には「デザイン思考」の方法論を取り入れて検討をおこなうと有効である。内容の検討に加えてプロセスも合わせてマネージメントすることが求められる。

宇戸 禎仁

電気探査法による簡易生体インピーダンスCT法の開発

体表面電位分布を計測するために開発した小型電極アレイを用いて,簡単に体内のインピーダンス分布を低侵襲的に計測する技術の開発を行っている。通常のインピーダンスCTのように多数の電極を体表面に配置するのではなく,簡単に着脱が出来る小型電極アレイを計測に用い,地質調査の分野で使用されている電気探査法を利用して内部のインピーダンス分布の再構成を行う。現時点ではまだ,生体の計測には至っていないが,電解液中に導電性ゲルを配置することで人体のインピーダンス分布を模擬し,計測のシミュレーション実験を行っている。また,有限要素法による解析も行い,実験結果と比較を行い,測定精度が分布形状に依存して変化することなどを明らかにしている。

外波 弘之

フェノールポリマーの合成とその機能性評価

 近年,酵素触媒をプラスチックなどのポリマー合成に利用する方法が注目されている.これは酵素触媒の有する次のような特徴を活用しよ うというものである.1,高い触媒活性 2,基質特異性 3,生分解性 4,穏和な条件下で機能.本研究では,このような酵素触媒の特徴を活かし,主として西洋ワサビ由来のペルオキシダーゼ(HRP)を触媒としてフェノール類を重合させる.生成するフェノールポリマーについて,抗酸化性などの機能性評価を行う.

福島 拓

話者の意図を適切に伝達可能な多言語間対話支援手法

医療従事者と外国人患者の間の対話支援を目的とした,多言語対話支援手法について述べる.医療現場において母語が異なるために意図の伝達が円滑に行えない問題を解決するために,用例対訳と機械翻訳を併用した多言語間対話支援技術の開発を行っている.本技術では,用例対訳や回答候補などの概念を用いて正確な意図の伝達を支援している.

松村 潔

発熱の分子・細胞メカニズムと薬物評価

炎症、感染、脳出血にはしばしば発熱や痛覚過敏がともなう。これらの病態は生体防御としての側面と、増悪因子としての側面があり、適切な制御が望まれる。そのためには、これらの病態の分子・細胞メカニズムを解明することが必要である。本研究室では様々なマウスの発熱モデルを用いて、その分子・細胞メカニズムを研究している。この実験系を用いて、発熱時の病態に対する薬物の効果を評価することもできる。

木原 崇雄

高速A/D変換器の非線形性を改善するデジタル補正技術

直接RFサンプリング受信機はA/D変換器(ADC)で数GHzのRF信号を低速のデジタルデータに変換している。この受信機の消費電力を十mW程度に減らせれば、無線端末用集積回路に応用可能となり、その開発コストと市場投入までの期間を軽減・短縮できる。電圧制御発振器(VCO)を用いたADCは高速変換と低消費電力動作を両立できるが、VCOの非線形性により発生する不要波が分解能を低下させる。本展示では、デジタル回路で不要波を低減させることでADCの高速変換・低消費電力動作を実現する技術を紹介する。

棚橋 一郎

金属コロイド粒子の作製と応用

金や銀等の貴金属は、その輝きから人々を魅了し、装飾品や硬貨として用いられてきました。金は、コロイド粒子になると赤紫色に、銀は黄色に発色します。このような金属コロイド粒子は、古くからステンドグラス等に使用されてきた色材以外に、バイオセンサ、3次非線形光学材料あるいは触媒材料としての応用が進められています。ここでは、銀コロイド粒子の作製方法とSERS(表面増強ラマン散乱)センサとしての特性について紹介します。

橘 未都,

安全なダンスの取り組みを目指した基盤構築

ダンスが必須化され,健康増進を目的としダンスが運動手段として取り入れられるようになったことで,日本におけるダンス人口は増加傾向である.しかし,ダンスは長年芸術性を重油視してきたため,として認識されてきたため,医科学的な視点での介入は少なく安全性への配慮はまだ整っていない.また,障害発生の多さはこれまでの研究で明らかになっているにも関わらず,その要因は不明の場合が多い.ダンス動作やダンス受講者の持つ特性を評価し,障害発生状況を調査することで,安全に対する指針や,障害予防の基盤を構築する.

渡辺 信久

有機ハロゲンモニター

ごみの燃焼は、たき火や山火事とは異なり、金属と塩類が共存する燃焼系であり、人類が初めて地球上にもたらしたものです。ハロゲンが金属を活性化し、新たな有機ハロゲンを生じます。これを最小化しなければなりません。塩ビなどの人工有機ハロゲンも、燃焼によって無機化・安定化されます。その監視・制御のために、気相の有機ハロゲンを迅速にオンラインモニタリングするものです。

吉田 準史

音を下げる。そして、音を活かす。

我々の周りには声や楽器、飛行機の音など様々な音があります。同じ音でも心地よい音もあれば騒音もあります。製品音は騒音と捉えられやすい音ですが時には、製品の状態を知る有効な手がかりになります。このことを踏まえ我々は製品音に着目し、その音全てを低減対象とせず、必要な成分と下げるべき成分に分別しようとしています。下げる音には、そのメカニズムを的確に把握する技術を構築しています。そして必要な音に対しては、その音を選び出し状態認知を手助けする方法も検討する等、音が持つ可能性を踏まえた技術開発を進めています。

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail