logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • センシング
  • 不正競争
  • 木製テント
  • 並列プログラミング
  • ネットワークデザイン
  • 迷路探査
  • エポキシ樹脂
  • 半導体
  • 拡張現実感
  • 教育
  • 垂直軸風車
  • アニオン重合
  • ロット分割
  • ハロゲン
  • アイデア発想
  • 対称性
  • 健康寿命
  • 研究拠点
  • 医療材料
  • 東日本大震災復興

すべてのキーワードを見る

ホーム顕微ラマン-フォトルミネッセンス測定システムの開発
SDGsの分類
研究テーマ
ナノ・材料
学科の分類
工学部一般教育科

顕微ラマン-フォトルミネッセンス測定システムの開発

工学部

一般教育科

応用物理研究室

原田義之 教授

顕微分光

 半導体微粒子の光物性研究,および表面増強ラマン散乱(SERS)の機構解明と多機能センサーへの応用を進めるため,これまで顕微ラマン-PL測定システムの開発を行ってきた。本研究で開発したシステムは,共焦点レンズ光学系を基本とする装置本体,焦点距離550 mmの分光器,紫外高感度型冷却CCD検出器,各種レーザー光源,顕微用極低温冷却装置,及び,精密x-y走査ステージから構成される。ラマン散乱,及び,PL測定用の励起光源としては,Nd-YAGレーザー(535 nm, 200 mW) ,He-Cdレーザー(325 nm, 50 mW)を用い,測定はすべて室温で行った。

 物質に光を入射させたとき,物質と相互作用して入射光と異なる波長で散乱される場合,その物理現象をラマン散乱という。入射光と散乱光のエネルギー差は物質内の振動準位や回転準位,あるいは電子準位に相当することから,ラマン散乱測定により,分子や結晶の対称性,面方位,キャリヤ密度,不純物,表面,及び,界面状態等の情報を得ることができる。一方,半導体などの物質に光を入射させた場合,電子遷移により吸収・生成された非平衡電子・正孔対のエネルギーが発光という形で緩和・放出する現象をフォトルミネッセンス(PL)という。それを調べることで,励起子,不純物,および格子欠陥に関する光学特性について多くの知見が得られる。今日,ラマン散乱,及び,PL測定は非破壊・非接触で様々な物質の光学特性を簡易に評価する方法として広く用いられている。

 最近,これら分光測定と顕微鏡を組み合わせた顕微分光法は,半導体微粒子や金属ナノ粒子などナノ材料の光学特性を探る有力な測定手法として注目されている。共焦点レンズ光学系と高倍率の対物レンズを用いた顕微ラマン-PL測定では,入射光をミクロンオーダーのスポットに集光できると共に,その微小領域からの散乱光や発光を高いSN比と空間分解能で検出することができる。通常のラマン・PL測定では試料間での比較が難しく,光学系のずれや励起光の集光度の違い等により,測定の再現性に問題が見られた。本研究では,顕微ラマン-PL測定システムを用いて,試料間のラマン散乱,及び,PL強度の比較や深さ方向や面内方向での強度分布を調べた。これらにより,SERSのより定量的な観測が可能となり,金属ナノ粒子を用いた多機能センサーの開発に役立つものと期待される。

 本システムは,主光学系に共焦点レンズ光学系を組み込むことで,高い空間分解能特性を有している。共焦点レンズ光学系は,使用する対物レンズの焦点と共役な位置にピンホールを配置して,そのピンホールを通った光のみを取り出して,検出する光学系である。

 散乱光を例として,右図を用いて光軸方向での結像と高分解能化について考察する。光源から出た光をレンズで試料に集光し,試料から散乱された光を検出器で観測する場合を考える。試料の光軸方向で観測したい微小領域が対物レンズの焦点位置Bにあるとき,散乱光はレンズ系によりハーフミラーを介してピンホール上に結像し,効率よく通過して検出される。次に対物レンズを光軸方向に動かし,焦点位置A,あるいは,Cとなるように観測位置をずらすと,散乱光はピンホール上でデフォーカスされるために急激に散乱光強度が減少する。このように,光軸方向では対物レンズの焦点位置がピンホールの上でうまく結像するか否かにより,分解能が大幅に向上する。さらに,試料の深さ方向での焦点位置を変化させることで,深さ方向の情報も得られる。一方,面内方向でも,次の理由から分解能が大幅に向上する。試料表面から位置Bと同じ深さの位置Dに焦点を合わせたとき,Dが光軸上にないため,散乱光の結像位置はピンホールからずれる。したがって,焦点位置Bの場合と比べて,急激に散乱光強度が減少することになる。

 Si上に約20μmの幅で,横長の細溝をつけ,その溝の中に粒子サイズ90 nmのZnOナノ粒子を埋め込んだ試料を作製した。本システムの評価のため,この試料に対する2次元PLマッピングの測定を試みた。ZnOナノ粒子が細溝に埋まった位置で強く発光していることがわかる。発光の強弱は粒子サイズや粒子の密集度に依存すると考えられる。このようにZnOナノ粒子の存在する位置を顕微鏡による実像と対比して観測できることがわかった。

Si上の細溝に埋め込んだZnOナノ粒子の顕微PLマッピング像

研究者INFO: 工学部 一般教育科 応用物理研究室 原田義之 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • アニオン重合
  • 垂直軸風車
  • 不正競争
  • 迷路探査
  • 対称性
  • エポキシ樹脂
  • 半導体
  • 研究拠点
  • ロット分割
  • 並列プログラミング
  • ネットワークデザイン
  • アイデア発想
  • 健康寿命
  • 拡張現実感
  • 木製テント
  • 教育
  • 医療材料
  • センシング
  • ハロゲン
  • 東日本大震災復興

すべてのキーワードを見る

同じカテゴリーの研究シーズ

河野 良坪

木造密集市街地における防災シミュレーション

わが国には歴史的な都市や、戦後の大都市への人口集中で形成された地区など、木造密集市街地が数多く存在し、そのような市街地は災害に対して脆弱です。ここでは、京都市の歴史地区を対象として、火災を想定した防災シミュレーションを行っています。そのシミュレーションは、火災時の延焼性状を防火対策別に示すもの、CFD(Computational Fluid Dynamics)を用いて火災時の煙流動を解析したもの、マルチエージェント(Multi-Agent)を用いて避難行動を予測したものです。

下村 修

一液型ロングライフ熱潜在性硬化剤の開発

一液型硬化剤として、保存安定性に優れ低温で硬化作用を持つアミン類をインターカレートしたリン酸ジルコニウムを合成した。これは高次に制御されたナノ空間内に配列したアミンを供することで、熱潜在性エポキシ樹脂硬化剤として利用できる。80℃以上に加熱することで樹脂硬化反応が高効率に促進し、作業時間短縮と省エネルギーに貢献しつつ、層状のリン酸ジルコニウム層間内への樹脂侵入による補強効果も一度に達成される利点を持つ。また、樹脂類とアミンの中から適当な配合処方の組み合わせにより硬化反応性の設計ノウハウを提供できる。

向出 静司

想定を超える大地震下における鋼構造建物の倒壊余裕度の向上

建築基準法の想定を超える大地震に対して,建築物は耐力を保持できる変形域を超えて耐力劣化し,倒壊する懸念がある.本研究者は,一般的な鋼構造ラーメン骨組を対象に,(1)超大変形域に至るまでの構成部材の破壊実験を通じて,その耐力劣化性状を把握すること,(2)超大変形域の挙動を考慮した建物全体の地震応答解析により,その倒壊性状を把握すること,(3)倒壊メカニズムに基づいた倒壊余裕度の評価方法を提案すること,などを実施している.

淀 徳男

人と共存可能なマイコン制御高輝度多色LED照射型植物工場の開発

将来の世界人口予測から40年後の2060年には世界の人口は100億人を突破すると予想される。100億人を越えると今の食糧生産事情では、全ての食糧を賄うことは不可能であると考えられる。特に日本では各国と比べて38%という食糧自給率の低さから将来の食糧問題は熾烈となる。また、さらに温暖化から、通常の屋外での農作物の生産力は低下することから、屋内での高効率の農業生産技術、特に人と共存可能な高生産力の植物工場が必要となる。

西川 出

デジタル画像相関法によるき裂・欠陥の非破壊検査

負荷を受ける部材の表面画像を2枚(時間差1秒程で2枚撮影する)利用して、表面のひずみ分布を非接触で評価するデジタル画像相関法援用変位・ひずみ評価システムを構築した。さらにこれを発展させ、き裂や欠陥に生じる特有のひずみ場を利用することにより、き裂・欠陥の有無は言うに及ばず、き裂周りの応力や応力拡大係数といった力学量を高精度に非接触評価できるシステムを開発した。

瀬尾 昌孝

二次元画像1枚からのキャラクターの姿勢制御

三次元構造や回転に関する特徴を獲得可能な深層生成モデルに人間の取り得る姿勢を学習させることで,類似の形状を持つ対象(本研究ではキャラクター)の姿勢制御を実現した.未知の二次元画像1枚からの姿勢制御が可能である.本研究は映像制作支援システムとしての発展を想定している.

上野 未貴

創作者の表現を計算機に学習させる

漫画・写真・小説などの創作物を創り,読み解く過程のデータを収集し,人工知能分野で拡がる画像処理・自然言語処理・機械学習・人とコンピュータ間の対話的なシステム開発に基づき,創ることを支援する研究を進めています.

吉村 勉

高速通信用発振器の相互干渉解析と自動補正に関する研究

近年の高速・高密度の大規模集積回路において,内蔵する発振器の性能がクロック同期系デジタル回路の処理速度に大きな影響を与える。そこで問題となるのが複数の発振器間の相互干渉である。私たちは今まで発振器の干渉ノイズのモデル化およびその実証と,位相同期回路における干渉ノイズの影響について研究してきた。特に完全同期にある発振器間の相互干渉において,小規模の補正回路でその影響を低減する手法を考案し,いくつかの知見を独自に得ている。本研究ではその知見をさらに一般的な凖同期の相互干渉の低減に適用し,今までにない新しい手法での相互干渉の影響削減の提案を行いたいと考えている。

藤井 伸介

集合住宅リノベーションにおける現代的な住まいの提案

集合住宅においては、時代の変遷や家族構成等の変化により、従来のn L D K型プランから現代の住まいに対応できる空間への再編が必要とされている。更にCOVID-19の影響により、テレワークを行うスペースや趣味を楽しめるスペース等、社会や生活空間に対するイメージが大きく変化し、従来のn L D K型プランとは異なる新しい住まいのあり方に関する提案が求められている。実在する集合住宅1室のリノベーションを行い、現代的な住まいのあり方を提案する(7案)。

見市 知昭

コロナ放電を用いた新規な活性酸素種供給法

液面にコロナ放電を照射すると生成した活性酸素種がイオン風によって液中まで輸送されます。現在、我々はこの現象を利用して液中に含まれる有害有機物の分解を行っており、その結果、従来の技術では困難な難分解性物質が分解できることを明らかにしています。また、従来法では利用できてない新たな活性酸素種が本方式では利用できている可能性が実験結果から示唆されました。このユニークな手法を用いて難分解性有機物の分解や溶液の殺菌・消毒を行います。

芦高 恵美子

神経障害性疼痛治療薬の開発

神経障害性疼痛は、糖尿病、癌、脊髄損傷に伴い、末梢神経系や中枢神経系の損傷や機能障害によって引き起こされる。痛覚過敏、本来痛みと感じない「触る」などの刺激が痛みとなるアロディニア(異痛症)、自発痛が見られる。非ステロイド性抗炎症薬やモルヒネなどの麻薬性鎮痛薬でも著効しない難治性の慢性疼痛である。神経ペプチド・ノシスタチン誘導体が経口投与で鎮痛作用をもつことを明らかにした。また、遺伝性結合組織疾患のエーラス・ダンロス症候群の慢性疼痛マウスモデルを確立した。

鎌野 健

有限多重ゼータ値の関係式

画像の無限和で定義される実数値を多重ゼータ値と呼び,多重ゼータ値全体がなす有理数体上ベクトル空間の構造は数学的に興味深い対象として研究されている.本研究では多重ゼータ値の“有限類似”とも言える有限多重ゼータ値について,積分表示を駆使することによりそれらの間の関係式を得た.

松本 政秀

OpenFOAMを用いた混相流解析

PCB(ポリ塩化ビフェニル)分解処理反応器内壁における腐食減肉発生メカニズムを解明するための初期検討として,異種二流体が化学反応を伴わずに混合する過程の熱流体解析を実施している.解析ツールとして,OpenFOAMの混相流解析ソルバー群より,非等温で圧縮性が考慮できる二相/二流体の非定常解析ソルバーtwoPhaseEulerFoam を用いた.腐食性を仮定した高密度流体が反応器隔壁の数mmの隙間から鉛直下方へ流れ落ち,減肉の生じた底部内壁へ到達することが確認できた.

西 壽巳

ハムノイズフリーで豊かな音色を実現! ギター用光学式ピックアップ

電磁誘導の原理に基づく従来型マグネティックピックアップは、電源トランスなどからの漏洩磁束を拾い、低周波のハムノイズ(ブーンという音)およびバズノイズ(ジーという音)が信号に重畳し悪影響を与えます. その対策としてハムバッカータイプ(主にGibson社製ギターに搭載)の考案など多くの努力が払われてきましたが完全には克服されていません. 本学光エレクトロニクス研究室は、通信用光デバイスや光センシングシステムの研究を長年実施してきました. そこで、これら技術を生かした弦楽器(今回はエレクトリックギター)の弦振動を“光学的”に検出する光学式ピックアップを考案・試作しました. 電磁誘導ではなく光量変化で弦振動を検出するためハムノイズを拾うことはありません!

渡辺 信久

有機ハロゲンモニター

ごみの燃焼は、たき火や山火事とは異なり、金属と塩類が共存する燃焼系であり、人類が初めて地球上にもたらしたものです。ハロゲンが金属を活性化し、新たな有機ハロゲンを生じます。これを最小化しなければなりません。塩ビなどの人工有機ハロゲンも、燃焼によって無機化・安定化されます。その監視・制御のために、気相の有機ハロゲンを迅速にオンラインモニタリングするものです。

岡山 敏哉

都市のオープンスペースにおける樹木配置の最適化

 都市のヒートアイランド現象は、最近の気温上昇に伴い、ますます問題視されることが予想されます。その緩和策のひとつとして、顕熱・潜熱に対する効果や蒸散作用を持つ植物による緑化が効果的です。この研究は、その緑化を効率よく行うために、地面の日照時間を最小化し、一方で植樹のためのコストを最小化することを目的とした最適解を遺伝的アルゴリズム(GA:Genetic Algorithm)を用いて導き出しています。

大塚 生子

日常会話における差別の(再)生産について

「ヘイトスピーチ」という語はこれまで、街宣活動やオンラインの掲示板などで不特定多数の人々に向けて発せられる、特定のアイデンティティを有する人々への差別的言語行動に対して用いられてきた。しかし、偏見や差別が人々の日常会話において談話を通して(再)構築されることを鑑み、本研究では個人間会話というミクロレベルでの差別の実践を問題とする。本研究では実際の会話の談話分析を通し、日常会話における差別は、「差別は悪である」という社会通念・規範よりも、相手との人間関係を良好に保つという相互行為上の規範が優先されるために起こるということを論じた。

米田 達郎

双児宮の名称変化

語彙の変化をヒトが意図的に起こすことは一般的にはない。自然に変化していくものである。しかし、十二宮の名称は明治になってから学術的に変化する。これはギリシア神話とも密接に結びつくかとも思われるが、何よりも世界基準に合わせるということもあると思われる。ここでは、双児宮の名称変化について、幕末から明治にかけて陰陽宮・双兄宮・双女宮が双児宮へと変化する過程を記述的に確認しつつ、双児宮へと名称変化した背景について考察する。 本研究では、理科学語彙の歴史的な変化を取り上げているが、それは生活語彙・教育語彙の変化ともいえる。多方面に派生する研究の一側面である。

瀬尾 昌孝

二次元画像1枚からの表情変化動画像のリアルタイム生成

深層生成モデルを用いて,1枚の二次元顔画像から表情変化動画像の自動生成を行った.現状,動画像のサイズは500×500pixel程度だが、超解像度、ネットワーク規模削減手法を組み合わせることでリアルタイムの生成を実現した.本研究はビデオ会議システムにおけるアバターの自動生成を想定して行っており、今後は応用システムの開発に取り組む予定である.

横山 奨

樹脂製マイクロ流体デバイスの量産に向けた拡散接合装置の開発

本技術は、主に金属の接合に用いられていた拡散接合を高分子樹脂に適用することで、医療用ディスポーザブルマイクロ流体デバイスの安価な量産の実現を目標としています。拡散接合は、母材を溶かすことなく接合界面を一体化するため、接合により透明性を損なうことはありません。さらに、多少の凹凸や切削痕が残っていても接合可能です。加工面への後処理も不要で、多種多様な高分子樹脂に対応可能です。現在、商用利用を目指して試作機を開発しており、テストサンプルとしてPMMA製のマイクロ流体デバイスの接合に成功しています。

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail