エッジAIで高精度画像認識
組み込み市場では,運用コストやセキュリティー,リアルタイム性などの問題から,エッジ(端末側)で単独処理できる「エッジAI」が期待されている.その実現方法であるFPGAによるエッジAIは根強いニーズがありながら,デバイスが高価格,実装が難しいという問題点があった.そこで,我々は,低価格のデバイスをターゲットにし,推論アルゴリズムを解析することで,効率よくアクセラレートする回路をFPGAで実装,処理を最適化することで,低消費電力で高速な推論処理を実現している.
近年,農家の高齢化や減少に伴い,カメラを用いた植物の自動監視技術が注目されている.しかし,植物の成長具合を判断する指標である枝構造の情報を取得する場合,葉によって枝が隠れてしまうため枝の情報を取得することが困難である.そこで,本研究では対象の植物を多視点から撮影し,多視点からの植物画像を入力として,枝の三次元構造を復元する.はじめに,多視点から撮影した植物画像に対して,深層学習による画像変換を行い,枝の存在確率画像を生成する.枝の存在確率画像とは,枝の存在確率を画素値で表した画像のことを指す.そして,多視点での枝の存在確率画像を用いて,三次元構造の復元を行うことで枝の構造復元を実現する.
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム