二次元画像1枚からの表情変化動画像のリアルタイム生成
深層生成モデルを用いて,1枚の二次元顔画像から表情変化動画像の自動生成を行った.現状,動画像のサイズは500×500pixel程度だが、超解像度、ネットワーク規模削減手法を組み合わせることでリアルタイムの生成を実現した.本研究はビデオ会議システムにおけるアバターの自動生成を想定して行っており、今後は応用システムの開発に取り組む予定である.
学習済みディープニューラルネットワーク(DNN)モデルの権利保護のために、電子透かしをモデル内へ埋め込む技術が注目されている。本研究では、画像分類型DNNモデルを対象とし、その内部パラメータは観測できず、入力画像と出力ラベル値のみが観測できる場合でも、そのDNNモデルを学習させた著作権者の情報を視覚的に取り出すことを実現する。
論文
「10x10画素ロゴを表現可能な深層学習電子透かし方式」(2020)『信学技報』EMM2020-1p.1-6.
「Visual Decoding of Hidden Watermark in Trained Deep Neural Network 」(2019)『IEEE MIPR2019』p.371-374.
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム