logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 建築設計
  • 太陽光発電
  • 臨床試験
  • 祇園祭
  • 人工知能
  • 星曼荼羅
  • 組織再生
  • 5-AF
  • 土構造物
  • 多言語
  • ヘイトスピーチ
  • 逆
  • グリーンケミストリー
  • 流体制御
  • マルチエージェント
  • 多色LED
  • 学習アプリケーション
  • 化学発光
  • 計測
  • ネットワーク

すべてのキーワードを見る

ホーム光学材料のレーザー損傷耐性の非破壊3次元イメージング技術
SDGsの分類
研究テーマ
ものづくり・製造技術
学科の分類
工学部電子情報システム工学科

光学材料のレーザー損傷耐性の非破壊3次元イメージング技術

工学部

電子情報システム工学科

レーザー研究室

神村共住 教授

光学材料レーザー損傷耐性非破壊イメージング

高レーザー損傷耐性で均質な光学材料の供給が産業用レーザーシステム、半導体露光装置等の性能、信頼性の向上に緊急で不可欠な課題となっている。本技術は、これまで開発してきた基本評価技術にさらに評価用レーザー光源の安定化を図ることで2光子吸収からレーザー損傷耐性を非破壊で高精度計測することを可能にしている。これにより各種光学材料のレーザー損傷耐性を非破壊で3次元イメージング可能な品質評価技術として確立している。

従来のレーザー損傷耐性の評価は、レーザー光を直接材料に照射して破壊しなければ計測できないため、レーザーシステムに実装する光学材料の品質検査方法としては用いることができない。さらに、レーザー照射条件、閾値解析など専門的な知識を必要とするため、光学材料の分光透過率や干渉透過波面などを計測するのと同様な市販装置は存在していない。一方、高純度光学材料の開発・製造では、製造条件に対する材料のガラス化、結晶化などのメカニズムを解明するために、材料内部の欠陥や不純物分布などの品質を3次元で高精細にイメージングできる評価手法の確立が求められているが実用には至っていない。そのため、分光透過率、透過干渉波面計測、組成・不純物分析などの複数の評価手法を用いて品質や均一性の評価を行っている。しかし、分光透過率、透過干渉波面計測などの評価手法では、光学材料を透過してくる微弱光を利用しているため、光が透過した部分の情報が積分された形で得られる。材料品質が優れた高純度光学材料の場合、品質の違いは測定精度の誤差と区別がつかないのが現状である。また、組成・不純物分析などの手法では検出限界以下の数値が得られていても、レーザー光を照射すると容易に損傷が発生する場合もある。

これらの技術的課題を解決可能とするレーザー損傷耐力を非破壊で計測する方法として、レーザー損傷の初期過程で重要な役割を果たす非線形吸収に着目した。材料の吸収端に近いレーザー光の損傷過程では、多光子吸収(非線形吸収)によって自由電子が発生・増殖し材料への運動エネルギーの移動が起こる。レーザー損傷における非線形吸収の役割に関する理論的な研究は古くから行われており、さまざまな光学材料について吸収係数などの物性値が報告されている。しかしながら、損傷理論、あるいは物性計測に関係したものがほとんどで、材料の品質評価まで言及した報告はない。これまでに、材料の透過限界波長に対応したバンドギャップエネルギーの半分よりも大きなフォトンエネルギーをもつレーザー光を利用すれば、非線形吸収がレーザー損傷の発生の支配的な要因で、材料品質(レーザー損傷耐性)と二光子吸収量の相関関係を初めて見いだすことに成功している。本研究では、光学材料に対して材料を損傷させない強さのレーザー光を用いて、品質に応じた非線形吸収量とレーザー損傷耐性の相関関係を明らかにし、さまざまな光学材料についてデータベースを作成し、実用的な品質評価技術として確立している。

タイトルなし

従来技術に対する新規性・優位性として、

  • 非線形吸収量との相関に注目した世界に先駆けた光学材料でのレーザー損傷耐性の非破壊検査方法
  • 産業界で汎用的に用いられる石英ガラスはもちろんその他の光学材料でも3次元イメージング化に成功

想定される活用例として、

  • 光学材料のレーザー損傷耐性の非破壊評価
  • 光学材料の品質管理
  • 光学材料製造における製造条件の最適化

 以下にCaF2結晶のレーザー耐性の3次元イメージング結果を示す。レーザー損傷耐性が異なる2つのCaF2結晶を用意し、非線形吸収量を0.5mm間隔で9箇所(2.25mm2)計測し面内均質性の評価を行った。高いレーザー損傷耐性を持つサンプルは低いレーザー損傷耐性のサンプルに比べ、全体的に非線形吸収量が大きく、面内のばらつきも小さくなることが確認でている。また、3次元イメージングおいても高いレーザー損傷耐性を持つサンプルは低いレーザー損傷耐性のサンプルに比べ、全体的に非線形吸収量が大きく、面内のばらつきも小さくなることが確認できた。

本開発技術は既存にはない新しい評価手法であるが、製品評価を通じて確立・普及を図る。最終的には、光学材料のレーザー損傷耐性評価手法としての世界的な標準化を目指す。 

特許

特願2004-271760「光学材料のレーザー損傷閾値評価方法」

特願2007-202904「光学材料のレーザ損傷耐性推定方法及びレーザ損傷耐性推定装置」

研究者INFO: 工学部 電子情報システム工学科 レーザー研究室 神村共住 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 土構造物
  • グリーンケミストリー
  • 計測
  • 建築設計
  • 太陽光発電
  • 流体制御
  • 臨床試験
  • 多言語
  • 5-AF
  • 多色LED
  • ヘイトスピーチ
  • 祇園祭
  • 人工知能
  • 逆
  • 学習アプリケーション
  • ネットワーク
  • 化学発光
  • 星曼荼羅
  • マルチエージェント
  • 組織再生

すべてのキーワードを見る

同じカテゴリーの研究シーズ

杉川 智

スケジュール変更を考慮した数理モデル

システム開発や建設業などのプロジェクトにおいて,スケジュール作成時点では,わからない不確定な事象によってスケジュールの変更を余儀なくされることがある.さらに,昨今の社会では即応性が求められるため,十分に吟味されないままスケジュールを作成し後で変更することもあります.本研究は,それらのスケジュール立案後の変更を考慮したスケジューリングモデルのための基本的な考え方,分類,数理モデルを提案します.本モデルによりスケジュールの変更をふまえた新しいスケジュールを作成すること,新しい解法を提案することが可能になります.

福岡 雅子

環境分野における地方公共団体の事務事業支援

水処理,ごみ処理,省エネルギー型の都市構造への転換などのような環境面のマイナスをゼロまたはプラスにする取り組みは,大衆の利益を向上させます。しかし,必ずしも当面の営利があがる事業ではありません。そのため,地方公共団体が税金を投入して担っています。 そのような地方公共団体における環境分野の取り組み,事務事業を支援し,利益を受け取る多くの人々に理解を促す方策について,社会実装と実証研究をしています。

小林 裕之

既設照明によるかんたん屋内定位技術 CEPHEID(セファイド)

屋内に設置されている照明光は、多くの場合個体差があります。「部屋A」と「部屋B」の照明機器はたとえ同一モデルであっても微妙な個体差があるのです!もちろん人間が目で見てわかる違いではありません。本技術はそれをAIで識別し、屋内の位置推定に用います。

和田 英男

赤外線スマートウィンドウの研究

 地球温暖化に伴う気候変動を解決するためには、熱エネルギーを効率的に使用して、物質から放出される排熱を抑制することが重要です。二酸化バナジウムは、温度上昇に伴い赤外線透過率が顕著に減少する反面、反射率は向上する性質(サーモクロミズム)を利用した赤外線放射抑制機能材料です。本研究では、ナノスケールモスアイ構造を有する二酸化バナジウム薄膜に着目し、「電気的駆動力なしに直接的に光スイッチング機能」をもつ赤外線スマートウィンドウの開発を実施しています。

椎原 正次

生産スケジュール改善サイクルの開発

 生産スケジュール改善サイクルは、ロット分割を段階的に進めることにより、段取り回数の増加を抑えつつ良好なスケジュールを得るための仕組みである。ロット分割は、生産スケジュール改善のための有効な手法の一つであるが、分割によってロット数が増えることになる。その結果として、総段取り時間が増加するだけではなく生産統制を複雑にしてしまう。このサイクルは四つのフェーズから構成され、受け入れ可能な総経過時間となる生産スケジュールが得られるまで繰り返す。

松田 泰明

次世代エネルギー変換デバイス材料の創成と新規エネルギー変換反応の開拓

固体中をリチウムやプロトンを始めとするイオンが高速で拡散する物質(イオニクス材料)を開拓し、固体の利点や特徴を活かした新規反応の探索、次世代蓄電・発電デバイスの開発を行っています。

福澤 寧子

セーフティ・セキュリティ統合分析技術

人やモノ、システムが多様に連携するIoTでは、新たな連携が事故を引き起こし、「セーフティ」だけではなく「セキュリティ」の観点からも対策が必要です。しかし、「セーフティ」と「セキュリティ」は独立に発展してきており、統合的なアプローチが確立できていないことから、システム理論に基づく安全分析手法 STAMP/STPA を拡張し、双方の観点からを同一フレーム上で統合分析する手法を提案しています。

野田 哲男

産業用ロボットの新しい価値基準の定義

今後,これまでの量産システムだけではなく,究極には一品物の生産に至るまでロボットを活用することが期待されている. 本研究では,生産機種切り替えの迅速化,設備の完全再利用といった新しい価値基準を定義し,その達成度を競う競技会で分野啓発を試みる.

奥 宏史

ドローンの閉ループシステム同定によるモデリングと飛行制御

幅広い産業でビッグデータの活用が進んでいるが,予測・診断・制御・意思決定の精度向上に際してモデルの重要性が近年ますます高まっている.データエンジニアリングのひとつの分野として,システム同定法によるデータ駆動モデリングについて紹介する.具体例として,MOESP型閉ループ部分空間同定法(CL-MOESP)によるドローンの閉ループ同定と,得られた同定モデルを利用した最適制御器設計の事例研究を紹介する.

伊與田 宗慶

部材のマルチマテリアル化を達成する抵抗発熱を活用した接合技術

 近年の自動車産業では,車体重量の低減を目的として,車体構造部材に対して従来の鉄のみならず,アルミニウム合金や樹脂材料を組み合わせるマルチマテリアル化が推進されている.中でも,鉄とアルミニウム合金を組み合わせたFe-Al異種金属材料の活用が期待されている一方で,その接合部において剥離強度である十字引張強さの低下が懸念されている.そこでFe-Al異種金属材料継手の接合強度向上に寄与する抵抗スポット溶接手法について開発を行った事例を紹介する.

佐々 誠彦

高強度テラヘルツ光源の開発

非破壊測定,ガン検査などへの応用が期待されるテラヘルツ時間領域分光測定用の安価で取り扱いが容易な光源の開発を行っています.半導体薄膜やヘテロ構造を利用し,性能向上を図っています.従来,光源励起用に使われていた大型で高価なチタンサファイアレーザーに替え,小型で安価なファイバーレーザーを使用できる素子を開発しています.

本田 昌昭

地域資源の活用による都市・地域更新の手法

 現在、日本は拡大・成長の時代から、縮小・成熟の時代へと突入したと言える。もはや、スクラップ・アンド・ビルドによる都市更新の時代ではない。本研究室では、これからの時代における都市更新の手法について研究を行っている。身の回りに多く蓄積された「建築ストック」の活用を前提とし、さらには、成長の時代に蔑ろにされながらも命脈を保っている「地域性」を発見・増幅することによって、これからの「共同体」のあり方についても研究・提案を行っている。

舩本 誠一

医療素材を作製するために必要な色々な技術開発

医療用素材の中で特に移植や生体と接触する生体材料において、動物の組織を利用するための加工技術として脱細胞化技術が近年注目されています。脱細胞化された生体組織は様々な場所で用いられています。加えて、組織の保存法やこの組織を異所性に用いることで得られる有効性などを引き出すための組織の加工技術など周辺技術の開発もまた盛んにおこなわれております。

古崎 康哲

嫌気性消化(メタン発酵)

研究者が扱うバイオマスは、下水汚泥、生ごみ、である。 リアクタの小型化に資する前処理技術を研究している。 生ごみについて、でんぷん質が多い場合に有効な前処理として、「バイオエタノール化」を行い、メタン発酵リアクタに投入するシステムを提案している。 バイオガス中メタン濃度向上、汚泥生成量削減、分解率向上、高負荷運転の達成、などの効果を確認している。

中山 学之

生体の運動制御メカニズムを取り入れた人と親和性の高い介護支援ロボット

人間の神経系や筋骨格系の構造は長い進化の過程で日常生活を行うのに適した形に最適化されてきたものと考えられています。本研究では進化の過程で生物が獲得してきた運動制御メカニズムをロボットに取り入れることにより,動力を使用せずに人やモノの自重を支持できる機械式自重補償装置や,脳の運動制御メカニズムを取り入れた環境適応制御,小脳-大脳基底核をモデル化したニューラルネットワークによる予測的な環境認識・最適行動生成を実現する研究を行っています。

上田 整

弾性数理解析による材料設計

数理固体力学は材料・機械・建築・土木工学に限らず、広い応用分野の様々な現象に対応しているが、その応用の根幹となるのは「線形弾性力学」である。この弾性力学は応用の目的や現象に合わせて基礎微分方程式を解くことに帰着される。  本研究室では、苛酷な使用条件下にある機械・構造物の材料設計および安全性・信頼性評価を目的として、材料の電気・熱・力学的挙動を解明している。恩師から頂いた言葉「弾性体の平衡の問題においては、非常に一般的な大定理を打ち立てるよりは、種々の特解を求めて集積することで知識はもたらされる」を胸に、以下に示すような破壊力学解析を実施し、弾性数理解析の学問分野の確立を目指している。

小林 弘一

壁の向こうに何がある?!

一つ目は電波の透過性に関する研究です。医療機関におけるX線CTとかMRIで想像できるように、電磁波は誘電体内を通過します。この性質から、建物内の様子を画像化する近距離レーダが考えられます。セキュリティ用の壁透過レーダ、水道管、ガス管、地雷などの地中埋設物探知レーダ、空港での危険物検知用レーダなどに応用できます。このレーダは一つ使い勝手の悪いところがあり、画像を作るために、送受信アンテナを規則的に走査する必要があります。そこで、オペレータがアンテナを自由に移動させても画像が得られる処理法を考案し確認中です(図1)。

杉本 賢二

衛星夜間光データを用いた停電地域の把握

災害による停電地域の早期復旧に向けた被害状況の把握には,二次災害リスクを軽減するため遠隔で受動的に得られるデータが求められている.本研究では,2019年台風15号を対象に,千葉県における停電地域と,人工衛星により観測される夜間における地表面の光強度(輝度)とを比較し,停電地域の推定を行った.その結果,市街地では復旧により輝度が大きく変化するが,山間部では判別が難しいことが明らかになった.

大森 英樹

家と車の電力を無線で相互融通するワイヤレスV2Hシステム

近年、変動形再生可能エネルギーによる系統の不安定化が問題となっている。電力の平準化を実現する分散システムとしてスマートハウスが注目されているが、蓄電池が高価であることが普及の妨げとなっている。この問題を解決する方法として電気自動車のバッテリーを家庭内配電に双方向に接続して利用するV2H(Vehicle to Home)システムが期待されている。しかし、従来の充電ケーブルを用いる接続方式では手間がかかるために、接続の頻度が低下してしまう。そこで著者らはスマートハウスの利用率と利便性の向上を図るため、電気自動車を家庭のカーポートに駐車するだけで、自動的に双方向の電力融通を行うことができるワイヤレスV2Hシステムの開発を行っている。 本研究では、国際規格SAEJ2954に準拠した許容周波数帯での動作で、家一軒分丸ごとの電力をカバーするハイパワー6kWの電力伝送を双方向で行うシステムの実現を目指している。効率と伝送電力を確保するため高周波の磁界を用いるが、高周波電力を発生する双方向コンバータとして、従来は4つのパワー半導体を用いたフルブリッジコンバータを用いた研究がなされてきた。本研究では、図1のようにわずか1つのパワー半導体で高効率に高周波電力を発生するシングルエンデッドコンバータを用い、従来のブリッジコンバータに比して圧倒的な小形軽量かつ低コストを実現するワイヤレスV2Hシステムを実現し、幅広い普及を目指す。 先に開発したシングルエンデッド式ワイヤレスV2Hシステムでは、(1)コンバータの構成部品である共振回路定数のわずかなばらつきによって伝送電力が大幅に変化してしまうというロバスト性の課題がある。(2)また、過去の技術ではスイッチの導通時間TONを変えて電力を制御するため、動作周波数が国際規格の85kHz帯から離脱するという課題がある。そこで、この問題を解決する新しい方式として周波数を可変しない位相シフト制御式電力制御を提案している。本提案方式を用いたワイヤレスV2Hシステムが高ロバスト性及び位相シフト方式を実現できることを確認できたので報告する。

鎌倉 良成

シミュレーションによる半導体デバイスの解析・設計支援技術

[概要] コンピュータシミュレーションを用いて、半導体素子の特性を解析する研究を行っています。ナノ~マイクロメートルスケールにおける電子や原子、あるいは熱の挙動を独自開発した粒子シミュレータで高精度に予測し、より高性能で信頼性の高い半導体素子設計に役立てることを目指しています。

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail