logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 直流配電
  • 建築計画
  • 防災
  • 電子ビーム応用技術
  • モデル予測制御
  • 有機合成
  • 強化学習
  • オンライン授業
  • 身体活動
  • マイコン
  • 日常会話
  • モデリング&シミュレーション
  • フェノールポリマー
  • 非把持双腕ロボット
  • 細胞シート工学
  • 砂ろ過
  • セキュリティ
  • 画像処理
  • 星辰絵画
  • 医療機器

すべてのキーワードを見る

ホーム有機ハロゲンモニター
SDGsの分類
研究テーマ
エネルギー・環境
学科の分類
工学部環境工学科

有機ハロゲンモニター 有機ハロゲンを見ながらごみ焼却を制御する

工学部

環境工学科

循環基盤工学研究室

渡辺信久 教授

共同研究者

SUNYifei
BUSCHERWolfgang
NAKUIHiroyuki
ハロゲンごみ処理計測

ごみの燃焼は、たき火や山火事とは異なり、金属と塩類が共存する燃焼系であり、人類が初めて地球上にもたらしたものです。ハロゲンが金属を活性化し、新たな有機ハロゲンを生じます。これを最小化しなければなりません。塩ビなどの人工有機ハロゲンも、燃焼によって無機化・安定化されます。その監視・制御のために、気相の有機ハロゲンを迅速にオンラインモニタリングするものです。

目的

ごみ焼却でダイオキシン類が生成することと、その生成の勢いは焼却の管理と関連が強いことがわかってきました。未燃炭素分が多いほど、煙道の汚れが多いほど、金属類の活性が強いほど、ダイオキシン類を生成しやすいのでです。その様子をモニタリングするために、有機状態のハロゲンを原子スペクトル分析で定量する方法を開発しました。リアルタイムで有機ハロゲン生成の状況をとらえて、運転制御・清掃で、ダイオキシン類を抑制するのです。

 

ダイオキシン類の生成とは​

ダイオキシン類および有機ハロゲンの生成経路は、炎の中で生成する経路と、燃焼後のガス冷却部分で生成する経路の2通りがあると考えられています。図は、その様子を表したものです。どちらも、炭素骨格に執拗にハロゲン原子が入り込む反応であり、塩素化ダイオキシン類の異性体で分析すると、特定の異性体が優勢に生じるというより、様々な異性体が一斉にできる「焼却パターン」を示します。ですから、有機塩素を総体として把握することは、ダイオキシン類をモニタリングしていることと極めて近いのです。

ごみ焼却でのダイオキシン類の生成と挙動

Kawamoto K et al (2007) Organohalogen Compounds 69: 182-185

有機ハロゲン(塩素など)をどのように定量するか

気相の目的物質を吸着捕集・加熱脱着して検出器に送ります。元素選択的・高感度にハロゲンを計測する原子発光法を開発しました。最もイオン化電圧の高いヘリウムの大気圧バリアー放電プラズマをつくり、その中に、加熱脱着ガスを導入し発光線を観測します。

アルミナ管上のタンデム銅箔電極が、高いプラズマ密度を実現し、ハロゲン発光線を得ることに成功しました。  

吸着捕集・加熱脱着・ヘリウムプラズマで総有機ハロゲンを定量する

ハロゲン発光線の観測

ハロゲン原子(F, Cl, Br, I)の発光スペクトルは、近赤外領域で観測されます。この付近であれば、分解能0.2 nm程度の分光器で分離できますので、光ファイバー接続・ミニチュアCCD-スペクトルメーターを適用できます。

図では、Brの発光線(827.2, 882.5, 889.8, 926.5 nm)を示しています。

アルミナ放電管出口同軸方向の発光線を光ファイバーでCCD 分光器に導入し、原子発光線を得る。

Lepkojus F, Watanabe N, Buscher W, Cammann K, Boehm G (1998) J Anal At Spectrom 14: 1511-1513
渡辺信久 ・ Buscher W ・ Boehm G (2000) 分析化学 50: 163-167

連続モニタリングのタイムトレンド

連続モニタリングをするときのダイオキシン類とのタイムトレンドを見てみましょう。焼却開始時の排ガス中のダイオキシン類と揮発性有機塩素(ハロゲンのうち、塩素だけを観測しています)を連続モニタリングしたものです。ダイオキシン類の増加と減少をこのモニターで観測することができます。

ごみ焼却施設スタートアップの時の有機ハロゲン、ダイオキシン類、クロロベンゼン類、クロロフェノール類

Watanabe et al (2010) J Mater Cycles Waste Manag 12: 254-263

ダイオキシン類との相関

定常状態での煙突出口付近での排ガス中のダイオキシン類と低揮発性有機塩素との相関を見てみましょう。低揮発性有機塩素とダイオキシン類の相関があることが読み取れます。ただし、有機塩素のモニタリング自体が毒性の情報を含んでいないため、毒性等量との相関は、実測濃度とのそれよりも低くなります。

煙突排ガスでのダイオキシン類と有機ハロゲンの相関

Watanabe N et al (2007) Chemosphere 67: S198-S204

汎用的なリスク懸念物質制御への展開

残念ながら、ダイオキシン類、しかも毒性にターゲットを絞ると、この方法で、完全一致した相関を得ることはできません。理由は、揮発性画分の差異と、総有機ハロゲンのスカラー量は毒性等量情報を含まないためです。それでも、未知の有機ハロゲンを含むリスク懸念物質を観測・制御するという観点から、この技術の重要性はますます高まっています。

論文

「Determination of gaseous semi- and low-volatile organic halogen compounds by barrier-discharge atomic emission spectrometry doi: 10.1016/S1001-0742(12 )60032-1」(2013)SUNYifei『J Environ Sci』25p.213-219.

「Online measurement of low-volatile organic chlorine for dioxin monitoring at municipal waste incinerators doi: 10.1016/j.chemosphere.2011.06.042」(2011)NAKUIHiroyuki『Chemosphere』85p.151-155.

「Correlation of low-volatile organic chlorine (LVOCl) and PCDD/Fs in various municipal waste incinerators (MWIs) doi: 10.1016/j.chemosphere.2006.05. 100」(2007)WATANABENobuhisa『Chemosphere』67p.S198-S204.

研究者INFO: 工学部 環境工学科 循環基盤工学研究室 渡辺信久 教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 砂ろ過
  • モデリング&シミュレーション
  • フェノールポリマー
  • 日常会話
  • オンライン授業
  • 建築計画
  • 身体活動
  • モデル予測制御
  • 強化学習
  • 非把持双腕ロボット
  • 直流配電
  • セキュリティ
  • 星辰絵画
  • 画像処理
  • 有機合成
  • マイコン
  • 医療機器
  • 電子ビーム応用技術
  • 細胞シート工学
  • 防災

すべてのキーワードを見る

同じカテゴリーの研究シーズ

古崎 康哲

嫌気性消化(メタン発酵)

研究者が扱うバイオマスは、下水汚泥、生ごみ、である。 リアクタの小型化に資する前処理技術を研究している。 生ごみについて、でんぷん質が多い場合に有効な前処理として、「バイオエタノール化」を行い、メタン発酵リアクタに投入するシステムを提案している。 バイオガス中メタン濃度向上、汚泥生成量削減、分解率向上、高負荷運転の達成、などの効果を確認している。

眞銅 雅子

プラズマ照射による植物の成長促進と機能性改善

近年の食の安全性への関心や、健康志向による機能性食品の需要増に応えるため、薬品を使用しない殺菌・消毒処理および農産物の持つ機能性の改善が望まれています。一方で、半導体産業等で使用されるプラズマは電子・イオンに加え化学的活性の高い粒子(活性種)を多量に含み、農業・医療分野においても幅広い用途が見込まれます。本研究では、植物種子等の生体表面にプラズマ照射を行うことで、種子表面の殺菌や、成長の促進、鮮度保持、機能性の向上等を目指しています。

林 暁光

高力ボルトを用いた鉄骨部材接合部の性能評価

従来の鉄骨構造の接合部設計では、剛接合とピン接合のどちらかで設計されている。本研究は高力ボルトと接合金物を用いた接合部の実態を剛接合でもピン接合でもないグレーゾーンの接合部として捉え、ありのままの姿で半剛半強の接合として検討している。具体的には耐震設計で必要とされている接合部力学性能指標のうち、接合部の初期剛性や耐力、復元力履歴特性およびエネルギー吸収能力の評価精度の向上を目指している。

熊本 和夫

安全安心で快適な社会を支えるIoT基盤技術に関する研究

コロナ禍をきっかけに、世界中の人々の生活スタイルが変化しつつあります。その中で重要な役割を果たすのが通信システムです。我々はネットワークそのものが、ユーザの利用形態、無線環境など様々な状態を理解し、状況に応じて最適なネットワーク利用形態をユーザに提供する究極に便利なネットワークインフラストラクチャの創造を目指しています。

藤井 伸介

集合住宅リノベーションにおける現代的な住まいの提案

集合住宅においては、時代の変遷や家族構成等の変化により、従来のn L D K型プランから現代の住まいに対応できる空間への再編が必要とされている。更にCOVID-19の影響により、テレワークを行うスペースや趣味を楽しめるスペース等、社会や生活空間に対するイメージが大きく変化し、従来のn L D K型プランとは異なる新しい住まいのあり方に関する提案が求められている。実在する集合住宅1室のリノベーションを行い、現代的な住まいのあり方を提案する(7案)。

原嶋 勝美

ソフトウェアエージェントによるによる社会シミュレーション

 複雑な社会の動きの完璧な予測や、瞬間的な社会の状態の正確な把握は、AIを用いても極めて困難である。一方で、生物や人間など多くのシステムは、動的かつ予測不能な局面において極めて柔軟に対処している。 本研究では、様々な生物や物体を模擬したソフトウェア(エージェント)を作成し、エージェントの自律行動や相互作用によって、社会に実在する問題や、現実では実現しにくい社会環境での生物の振る舞いなどを検証する。

吉田 恵一郎

誘電体を用いたすすの静電捕集とプラズマ分解

エンジン等の燃焼排ガスに含まれる「すす」を除去するには,多孔質セラミックのフィルタが用いらせますが,すすの蓄積とともに圧力損失が上昇します.  一方,静電集じん技術は,帯電させた微粒子を静電引力で気流から取り除くため圧力損失が極めて低いものの,導電性の高いすすの場合,再飛散しやすいという問題があります.  本申請技術は,コレクター部に誘電体を用いることで,フィルタレスで高効率に集塵を行い,同時に,誘電体上で低温プラズマによって酸化分解まで行うことが可能です.

橋本 智昭

融液内対流のモデル予測制御

融液内対流を制御する手法としては,るつぼの回転速度の調整,るつぼ側面の温度調整,磁場の印加などが制御入力の候補として考えられる.融液の対流現象を表現するための基礎方程式として,融液を非圧縮性流体と仮定すると,質量保存則から導かれる連続の式,運動量保存則から導かれるNavier-Stokes方程式,温度の拡散現象を表すエネルギー式,濃度の拡散現象を表す物質拡散方程式が挙げられる.これらの基礎方程式で記述される熱流体システムに対して,モデル予測制御系設計法が確立されている.

日置 和昭

降雨量観測に基づく土砂災害発生危険度予測・監視に関する研究

 都市デザイン工学科の地盤領域(地盤防災研究室、地盤環境工学研究室)では,近年多発する豪雨や来たるべき巨大地震により山腹斜面や土構造物が崩壊する危険度を予測・評価するためのさまざまな研究を行っています.このうち,降雨量観測に基づく土砂災害発生危険度予測・監視に関する研究を紹介します.

辻本 智子

認知言語学的手法を応用した英語前置詞教材の開発

英語習得において、しばしば躓きの原因となる多義語の前置詞であり、また認知言語学における多義語研究が前置詞に関して最も進んでいることから、認知言語学の知見を生かした中学生向けオンライン教材『アニメで学ぶ 英語前置詞ネットワーク辞典』を開発した。認知言語学で言う「スキーマ図」のアニメ化がポイントである。

長谷川 尊之

テラヘルツ波放射の制御に向けた計測システム開発と放射機構解明

近年、光と電波の性質を兼ね備えたテラヘルツ領域電磁波(テラヘルツ波)が、さまざまな分野で役立つことから注目を集めています。テラヘルツ波は超短光パルスを半導体結晶に照射すると発生させることができます。その発生特性は、電子や原子の状態の超高速な時間変化を反映します。よって、それらの時間変化を制御することができれば、発生するテラヘルツ波を制御できるようになります。本研究室では、独自の計測システムを駆使して電子・原子の超高速現象を調査し、テラヘルツ波放射機構の解明と放射特性の制御を目指しています。

大塚 生子

日常会話における差別の(再)生産について

「ヘイトスピーチ」という語はこれまで、街宣活動やオンラインの掲示板などで不特定多数の人々に向けて発せられる、特定のアイデンティティを有する人々への差別的言語行動に対して用いられてきた。しかし、偏見や差別が人々の日常会話において談話を通して(再)構築されることを鑑み、本研究では個人間会話というミクロレベルでの差別の実践を問題とする。本研究では実際の会話の談話分析を通し、日常会話における差別は、「差別は悪である」という社会通念・規範よりも、相手との人間関係を良好に保つという相互行為上の規範が優先されるために起こるということを論じた。

鵜飼 孝博

非接触型の空間温度分布計測手法

光の屈折を利用した空間の温度分布の計測手法を開発しました.航空機・自動車・流体機械・家電の周辺に生じる熱の移流などの流体現象の把握に役立ちます.現在,複雑な流れ場にも適用できる手法の開発にも取り組んでいます.

大森 英樹

家と車の電力を無線で相互融通するワイヤレスV2Hシステム

近年、変動形再生可能エネルギーによる系統の不安定化が問題となっている。電力の平準化を実現する分散システムとしてスマートハウスが注目されているが、蓄電池が高価であることが普及の妨げとなっている。この問題を解決する方法として電気自動車のバッテリーを家庭内配電に双方向に接続して利用するV2H(Vehicle to Home)システムが期待されている。しかし、従来の充電ケーブルを用いる接続方式では手間がかかるために、接続の頻度が低下してしまう。そこで著者らはスマートハウスの利用率と利便性の向上を図るため、電気自動車を家庭のカーポートに駐車するだけで、自動的に双方向の電力融通を行うことができるワイヤレスV2Hシステムの開発を行っている。 本研究では、国際規格SAEJ2954に準拠した許容周波数帯での動作で、家一軒分丸ごとの電力をカバーするハイパワー6kWの電力伝送を双方向で行うシステムの実現を目指している。効率と伝送電力を確保するため高周波の磁界を用いるが、高周波電力を発生する双方向コンバータとして、従来は4つのパワー半導体を用いたフルブリッジコンバータを用いた研究がなされてきた。本研究では、図1のようにわずか1つのパワー半導体で高効率に高周波電力を発生するシングルエンデッドコンバータを用い、従来のブリッジコンバータに比して圧倒的な小形軽量かつ低コストを実現するワイヤレスV2Hシステムを実現し、幅広い普及を目指す。 先に開発したシングルエンデッド式ワイヤレスV2Hシステムでは、(1)コンバータの構成部品である共振回路定数のわずかなばらつきによって伝送電力が大幅に変化してしまうというロバスト性の課題がある。(2)また、過去の技術ではスイッチの導通時間TONを変えて電力を制御するため、動作周波数が国際規格の85kHz帯から離脱するという課題がある。そこで、この問題を解決する新しい方式として周波数を可変しない位相シフト制御式電力制御を提案している。本提案方式を用いたワイヤレスV2Hシステムが高ロバスト性及び位相シフト方式を実現できることを確認できたので報告する。

棚橋 一郎

金属コロイド粒子の作製と応用

金や銀等の貴金属は、その輝きから人々を魅了し、装飾品や硬貨として用いられてきました。金は、コロイド粒子になると赤紫色に、銀は黄色に発色します。このような金属コロイド粒子は、古くからステンドグラス等に使用されてきた色材以外に、バイオセンサ、3次非線形光学材料あるいは触媒材料としての応用が進められています。ここでは、銀コロイド粒子の作製方法とSERS(表面増強ラマン散乱)センサとしての特性について紹介します。

中村 友浩

骨格筋オルガノイドを活用した簡便な筋萎縮モデル

我々の研究グループでは、長期的な培養が可能で成熟度が高く、機能評価が可能なマウス骨格筋細胞のオルガノイド作成に成功しており、この骨格筋オルガノイドの培養中に生じる受動的張力を解放することで簡便に生体と類似した筋委縮誘導できる生体外モデルを開発している。この生体外デバイスを利用し、生体の筋萎縮を模倣することが可能であれば、筋萎縮を改善する創薬および高機能食品の開発が飛躍的に進展すると期待できる。

又吉 秀仁

太陽光発電システムの擬似ドループ制御を用いたDCマイクログリッド

再生可能エネルギーの大量導入を可能にするDCスマートグリッドのための新しいマネジメント手法を開発した。提案するDCシステムは自立運転を可能とする設計であり、エネルギー貯蔵装置の活用だけでなく負荷制御や再生可能エネルギー電源の出力抑制制御を検討した。DCマイクログリッドの安定した自立運転のために、PVモジュールの特性を利用する疑似Droop制御手法を提案した。疑似Droop制御は最大電力の推定を行わないシンプルな制御システムにより、PV出力電力の適切な抑制を可能とする。

村岡 雅弘

分子を組み合わせてナノレベルの機械部品を操作する

ロタキサンやカテナンなどに代表されるインターロック分子は、分子間に生じる超分子相互作用を介して互いに絡み合い固定化した興味深い構造を有しています。これまでに、近年の有機分子合成技術を多用して、多種類のインターロック分子の合成に成功しています。そこで我々は、このインターロック分子の特徴的な動的挙動や3次元構造を有効利用して、分子マシンとして実社会での応用を実現すべく、ナノレベルの機械部品となる分子設計とその開発研究を行っています。

淀 徳男

人と共存可能なマイコン制御高輝度多色LED照射型植物工場の開発

将来の世界人口予測から40年後の2060年には世界の人口は100億人を突破すると予想される。100億人を越えると今の食糧生産事情では、全ての食糧を賄うことは不可能であると考えられる。特に日本では各国と比べて38%という食糧自給率の低さから将来の食糧問題は熾烈となる。また、さらに温暖化から、通常の屋外での農作物の生産力は低下することから、屋内での高効率の農業生産技術、特に人と共存可能な高生産力の植物工場が必要となる。

吉田 準史

音を下げる。そして、音を活かす。

我々の周りには声や楽器、飛行機の音など様々な音があります。同じ音でも心地よい音もあれば騒音もあります。製品音は騒音と捉えられやすい音ですが時には、製品の状態を知る有効な手がかりになります。このことを踏まえ我々は製品音に着目し、その音全てを低減対象とせず、必要な成分と下げるべき成分に分別しようとしています。下げる音には、そのメカニズムを的確に把握する技術を構築しています。そして必要な音に対しては、その音を選び出し状態認知を手助けする方法も検討する等、音が持つ可能性を踏まえた技術開発を進めています。

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail