logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo main
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
大阪工業大学
logo main logo light
研究シーズを検索
  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー
研究シーズを探す
カテゴリー・キーワードから探す
SDGsの分類
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任 つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 該当無し
テーマの分類
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科の分類
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • 骨格筋オルガノイド
  • リアルタイム
  • 傾斜機能材料
  • 収縮ひび割れ
  • SRAM
  • スマートフォン
  • 非破壊検査
  • ドライリキッド
  • 電池
  • 位置推定
  • 健康
  • オクシモロン
  • 道案内
  • デザインレビュー
  • 環境デザイン
  • 高等教育
  • ROS
  • 脳波
  • 周縁化(いじめ)
  • コミュニティデザイン

すべてのキーワードを見る

ホーム第一原理計算で解き明かす原子核の姿
SDGsの分類
研究テーマ
自然科学
学科の分類
工学部一般教育科

第一原理計算で解き明かす原子核の姿

工学部

一般教育科

核物理研究室

明孝之 准教授

原子核分子動力学第一原理計算

元素の源となる原子核は陽子と中性子から構成され、それらの間に作用する「核力」によって結合します。核力はパイ中間子とよばれるミクロな粒子を陽子と中性子の間で交換することにより生じます。本研究では、この特徴を持つ核力が原子核の性質にどのような影響を与えるのか調べています。

背景と目的

原子核は、構成粒子である陽子と中性子(核子とよばれます)の間にはたらく核力によって結合する量子多体系です。核力は、湯川秀樹氏によって提唱された「パイ中間子」とよばれる粒子を核子間で交換することで説明される、とても強い引力です(図1)。本研究では、このパイ中間子を起源とする核力が原子核の構造に与える影響を調べています。特に核力をそのまま用いて原子核の構造を調べる「第一原理計算」を数値的に行っています。

原子核の第一原理計算は世界中で精力的に行われていますが、核力の扱いは一般的に難しいため、結果は炭素12(陽子6個と中性子6個)までにとどまっています。原子核は300個程度の質量数(陽子と中性子の数の総和)まで存在しますが、重い原子核は最先端の理論でも計算が不可能であり、代わりに現象を再現するモデル化が導入されています。したがって、より大きな質量数を含めた原子核全体の性質を、その結合の基本原理である核力から解き上げ、解明することは原子核物理の大きな目標となっています。

パイ中間子交換力
図1: 陽子と中性子間のパイ中間子交換の概念図

内容

本研究では核力を扱う新しい原子核の理論を提唱しています。原子核を記述するためのベースとなる模型には「分子動力学」(Molecular Dynamics, MD)を用います。この理論では、陽子と中性子がパイ中間子を交換することで生じる特徴的な引力である「テンソル力」(非等方性をもつ)に注目し、原子核の内部でテンソル力の効果を受けた陽子・中性子の運動を適切に記述します。実際に小さな質量数の原子核に適用し、精密計算を再現することを確かめました(図2)。今後はこの新理論をより重い原子核へ適用することで、核力から原子核を理解し、さらに原子核自身の新奇な構造を探っていく予定です。

He原子核の第一原理計算
図2: 新しい原子核理論「TOAMD」によるHe原子核の結合エネルギーの収束計算

新規性

  1. 本研究ではパイ中間子の交換から生まれる核力の特徴である「テンソル力」を扱う原子核の理論を構築しています。核力を直接扱う理論は一般的に質量数が小さい原子核に制限されます。一方、本研究の理論ではテンソル力の効果を効率的に取り入れる工夫がなされており、より大きな質量数への適用が可能であると見込まれます。
  2. 原子核の形は球形だけはなく、例えば変形したり、複数のα粒子(He原子核)に分離した分子的な状態も存在します(図3)。特に分子的状態は恒星内部における元素の生成過程の理解に重要です。本研究では、核子(陽子、中性子)をガウス関数型の波束で表した分子動力学(MD)を用います。核子を表す波束が近づいたり離れたりすることで、分子的な状態の原子核を容易に記述することができます。
炭素12の3α状態(ホイル状態)
図3: 炭素12(12C)が励起した3α状態(ホイル状態という)の概念図

用途・効果

  1. 原子核物理学:量子多体系である原子核の構造を、核力を用いてより基本的な観点から解明します。
  2. 多体基礎理論:物理学や化学等の分野で扱う多粒子系の現象において、粒子間にはたらく多体相関を記述する基礎理論の発展につながります。

研究者INFO: 工学部 一般教育科 核物理研究室 明孝之 准教授

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム
SDGs
研究テーマ
  • IT・IoT・AI・ロボティクス
  • 建築
  • 土木・社会基盤
  • エネルギー・環境
  • ライフサイエンス
  • ものづくり・製造技術
  • ナノ・材料
  • デザイン
  • 人文学
  • 自然科学
  • 該当無し
学部・学科
  • 工学部
    • 都市デザイン工学科
    • 建築学科
    • 機械工学科
    • 電気電子システム工学科
    • 電子情報システム工学科
    • 応用化学科
    • 環境工学科
    • 生命工学科
    • 一般教育科
    • 総合人間学系教室
    • ナノ材料マイクロデバイス研究センター
  • ロボティクス&デザイン工学部
    • ロボット工学科
    • システムデザイン工学科
    • 空間デザイン学科
  • 情報科学部
    • 情報知能学科
    • 情報システム学科
    • 情報メディア学科
    • ネットワークデザイン学科
    • その他
  • 知的財産学部
    • 知的財産学科
  • 知的財産研究科
  • 教務部
    • 教育センター
    • ランゲージラーニングセンター
  • 情報センター
  • 八幡工学実験場
  • ものづくりセンター
  • 該当無し
キーワード
  • ドライリキッド
  • スマートフォン
  • 脳波
  • 健康
  • オクシモロン
  • 高等教育
  • 道案内
  • 電池
  • コミュニティデザイン
  • 収縮ひび割れ
  • 環境デザイン
  • ROS
  • デザインレビュー
  • 位置推定
  • 骨格筋オルガノイド
  • 周縁化(いじめ)
  • 非破壊検査
  • リアルタイム
  • 傾斜機能材料
  • SRAM

すべてのキーワードを見る

同じカテゴリーの研究シーズ

瀧川 宏樹

英国ヴィクトリア朝の文学作品における男性像の研究

本研究では、英国ヴィクトリア朝の男性表象の探求をテーマとしている。当時、男性は女性と比較して、社会的に優遇された立場にあった。そのため、これまでの研究では、社会的に冷遇されていた女性に焦点を当てたフェミニズム研究が盛んに行われてきた。 ところが、昨今のジェンダー研究においては、社会的に優遇されている男性もまた、社会が求める理想的な男性像に苦悩しているのではないかという視点が確立されている。男女平等を確立し、女性が生きやすい社会を作ることは言うまでもないが、男性も生きやすい社会を目指してこそ、真のジェンダー平等の達成と言える。 ブランウェル・ブロンテの作品における男性表象に着目し、そこから見えてくる理想的な男性像と、ブランウェル・ブロンテが実人生で直面した現実の男性の生き様との間の齟齬を探りだすのが、本研究の目標である。

田熊 隆史

腕振り運動の科学

動物の四脚歩行と異なり,ヒトの二脚歩行は力学的に不安定なものです.体幹や腕部といった質量の大きな部位が脚の上にあり,これを転倒せずに片足で支える制御は大変難しいです.本研究ではこれら上半身を制御の安定性を阻害する要素と考えるのではなく,「うまく上半身を動かすことで歩行を促進できないか?」と考え,そのメカニズムの解明と検証を行います.検証では上半身をバネ要素を持つ柔軟体幹と前後に質点を移動させる腕パーツに近似し,歩行の安定指標である床反力中心が腕振り運動を調整することで操作可能であることを数理的に示しました.またこのことを検証するために実機を試作し,腕振り運動により床反力中心が歩行をしやすいように移動していること,それにより歩行が可能であることを確認しました.

村岡 雅弘

分子を組み合わせてナノレベルの機械部品を操作する

ロタキサンやカテナンなどに代表されるインターロック分子は、分子間に生じる超分子相互作用を介して互いに絡み合い固定化した興味深い構造を有しています。これまでに、近年の有機分子合成技術を多用して、多種類のインターロック分子の合成に成功しています。そこで我々は、このインターロック分子の特徴的な動的挙動や3次元構造を有効利用して、分子マシンとして実社会での応用を実現すべく、ナノレベルの機械部品となる分子設計とその開発研究を行っています。

井上 晋教授,大山 理教授,三方 康弘教授,今川 雄亮講師

大型供試体による橋梁の性能評価

 八幡工学実験場は,大阪工業大学が,学内の教育・研究活動の活性化のみならず,産・官・学の各方面との交流により社会や技術の発展に寄与することを目的として設立されたものです.本実験場は,1986年12月に構造実験センターとしてそのスタートを切り,その後,水理実験センター,高電圧実験センターを併置して今日に至っています.広大な実験場の敷地内には特色ある各種の大型実験設備・装置が設置されており,これらは実験場設立の趣旨にしたがい,学内の教育・研究はもとより,学外の関係各方面との綿密な連携のもとに行われる各種の委託研究や共同研究に役立てられています.また,このような学外との交流は実験場で学ぶ学生にとって貴重な体験となっています.
 ここでは,構造実験センターに設置されている主な実験設備・装置を紹介するとともに,その設備・装置を用いて取り組んでいる研究について紹介します.

佐々 誠彦

高強度テラヘルツ光源の開発

非破壊測定,ガン検査などへの応用が期待されるテラヘルツ時間領域分光測定用の安価で取り扱いが容易な光源の開発を行っています.半導体薄膜やヘテロ構造を利用し,性能向上を図っています.従来,光源励起用に使われていた大型で高価なチタンサファイアレーザーに替え,小型で安価なファイバーレーザーを使用できる素子を開発しています.

大谷 真弓

「その人らしさ」の表現を目指す

人の「その人らしさ」は、様々な形で表現されます。摂食障害等のこころの病は、その人の「生きづらさの表現」だという視点でも捉えられますが、他方で、芸術活動にその人の表現を載せることで、そこに表われてくるものを、「生きづらさの表現」としてではなく、まさに「その人らしさ」が表われているのだ、という視点から捉えることも可能です。本研究では、「その人らしさ」が芸術活動(本研究では陶芸活動)の中で表現されているという視点から、陶芸活動を視ています。その上で、「その人らしさ」がいかに表われてくるのか、いかに変化していくのかを追い、どのような表現をすることが「生きづらさ」からの脱却へとつながるのか明らかにし、実践につなげます。

原嶋 勝美

ソフトウェアエージェントによるによる社会シミュレーション

 複雑な社会の動きの完璧な予測や、瞬間的な社会の状態の正確な把握は、AIを用いても極めて困難である。一方で、生物や人間など多くのシステムは、動的かつ予測不能な局面において極めて柔軟に対処している。 本研究では、様々な生物や物体を模擬したソフトウェア(エージェント)を作成し、エージェントの自律行動や相互作用によって、社会に実在する問題や、現実では実現しにくい社会環境での生物の振る舞いなどを検証する。

桑原 一成

天然ガスや水素を燃料とする新世代エンジンの高精度着火予測モデルの開発

数値的検討により新たなエンジン技術の開発を加速することが求められている。数千の化学種と数千の素反応から構成される詳細反応モデルが記述するガソリンの着火遅れ時間の温度・圧力・当量比・EGR依存性をわずか五つの式により誤差10 %以内という高精度で再現可能な方法を確立した。この着火遅れ時間総括式を用い、最も簡素な着火予測モデルとして普及しているLivengood-Wu積分を遡り型で行うという新たな発想により、高汎用性、高精度、低計算負荷を極めて高いレベルで並立させたガソリン着火予測モデル(ノッキング予測モデル)を確立した。このモデルを天然ガス、水素、アンモニアなどの新燃料の着火予測に拡張することにより、これらの燃料を用いた新世代エンジンの開発に大きく貢献可能であると考える。

古崎 康哲

嫌気性消化(メタン発酵)

研究者が扱うバイオマスは、下水汚泥、生ごみ、である。 リアクタの小型化に資する前処理技術を研究している。 生ごみについて、でんぷん質が多い場合に有効な前処理として、「バイオエタノール化」を行い、メタン発酵リアクタに投入するシステムを提案している。 バイオガス中メタン濃度向上、汚泥生成量削減、分解率向上、高負荷運転の達成、などの効果を確認している。

松浦 清

科学と宗教を繋ぐ美術

星曼荼羅の二形式すなわち円形式および方形式(図1)の構成要素とその配置に基づく構成原理ならびに成立と展開の解明を研究の中心としつつ、須弥山図(図2)などの絵画作品において、天文学に基づく科学知識と天空への思想がどのように関連して作品として成立しているのかを研究している。

岡山 敏哉

都市のオープンスペースにおける樹木配置の最適化

 都市のヒートアイランド現象は、最近の気温上昇に伴い、ますます問題視されることが予想されます。その緩和策のひとつとして、顕熱・潜熱に対する効果や蒸散作用を持つ植物による緑化が効果的です。この研究は、その緑化を効率よく行うために、地面の日照時間を最小化し、一方で植樹のためのコストを最小化することを目的とした最適解を遺伝的アルゴリズム(GA:Genetic Algorithm)を用いて導き出しています。

木原 崇雄

高速A/D変換器の非線形性を改善するデジタル補正技術

直接RFサンプリング受信機はA/D変換器(ADC)で数GHzのRF信号を低速のデジタルデータに変換している。この受信機の消費電力を十mW程度に減らせれば、無線端末用集積回路に応用可能となり、その開発コストと市場投入までの期間を軽減・短縮できる。電圧制御発振器(VCO)を用いたADCは高速変換と低消費電力動作を両立できるが、VCOの非線形性により発生する不要波が分解能を低下させる。本展示では、デジタル回路で不要波を低減させることでADCの高速変換・低消費電力動作を実現する技術を紹介する。

高山 成

潜在有効発汗量を使った東京オリンピックマラソン競技における熱中症リスクの評価

一般的に熱中症危険度の指標として湿球黒球温度(WBGT)が使用されています.WBGTは携帯型の機器ですぐに測定できる簡便さがある一方,経験的な指標(めやす)で物理的な根拠に乏しいという欠点がありました.今回学生たちの実験を基に考案されたPESは,ヒトの熱の出入りの数理的な計算(人体熱収支モデル)が基になっており,脱水による体重減少率という定量的な指標で熱中症リスクを評価できます.さらに評価方法も,①気象台のデータから計算 ②WBGT計のような装置で現場で測定 ③WBGT値から推定 と3パターンのバリエーションで使え,物理的な根拠の明確さと実用性を兼ね備えたものになっている点が新しい手法です.

小林 裕之

既設照明によるかんたん屋内定位技術 CEPHEID(セファイド)

屋内に設置されている照明光は、多くの場合個体差があります。「部屋A」と「部屋B」の照明機器はたとえ同一モデルであっても微妙な個体差があるのです!もちろん人間が目で見てわかる違いではありません。本技術はそれをAIで識別し、屋内の位置推定に用います。

本田 澄

欠陥データを利用したソフトウェアプロジェクト比較手法に関する研究

本研究では様々なドメインや開発スタイルに属するソフトウェア開発に対して有効なソフトウェア信頼性モデルを構築し活用方法を広く普及することでソフトウェア開発をより効果的で制御可能とすること目的とします。そのためには多くの企業の開発データの収集方法および普及方法としてウェブアプリケーションの開発が必要です。また企業の開発データのみならずオープンソースソフトウェアにおける開発データも対象とします。本研究を行うことで現在困難とされている開発スケジュールの定量的な決定に役立つと考えられます。

林 暁光

高力ボルトを用いた鉄骨部材接合部の性能評価

従来の鉄骨構造の接合部設計では、剛接合とピン接合のどちらかで設計されている。本研究は高力ボルトと接合金物を用いた接合部の実態を剛接合でもピン接合でもないグレーゾーンの接合部として捉え、ありのままの姿で半剛半強の接合として検討している。具体的には耐震設計で必要とされている接合部力学性能指標のうち、接合部の初期剛性や耐力、復元力履歴特性およびエネルギー吸収能力の評価精度の向上を目指している。

林 茂樹

知的財産学部シーズ一覧

知的財産学部所属教員の研究シーズ一覧です.

小西 将人

実行不要な命令を動的に排除する効率的なプロセッサ

プロセッサの命令実行の効率性を妨げる要因の1つとして,ロード命令の実行にかかる時間が大きいことが挙げられる。この研究の目的は,不要なロード命令の一部を動的に排除(スキップ)するようなプロセッサの構成を提案し,命令実行の効率性をあげようとするものである。予備評価によりおおよそ15%程度のロード命令がスキップできる可能性があり、プロセッサ全体の性能を向上させることが期待できる。

中村 吉伸

シランカップリング剤によるエポキシ樹脂の高性能化

 超LSIの封止樹脂は,エポキシ樹脂にシリカ粒子が分散されており,界面の接着による高強度化や吸水率低減の目的でシランカップリング剤も加えられている。発表者らは,以下の比較からさらに高性能化できるシランカップリング剤の構造と使用方法を明らかにした。1)前処理法とインテグラルブレンド法  2)構造:界面結合型と疎水化型  3)界面の結合とマトリックスの改質  今後,自動車組立はエポキシ樹脂による接着が主流になるが,この高性能化にも応用可能である。

中村 成春

コンクリート工学計算ツールとしての収縮ひび割れ制御法の開発

近年の日本建築学会等の建築工事標準仕様書や関連指針では,仕様設計の規定とともに,性能設計の対応が明示されるようになったが,初・中級技術者は,コンピュータプログラム言語等に精通しているとは言い難く,結果的に,各種工学モデルの計算が必要な性能設計の対応が難しい。そこで,コンクリート工学計算ツールとして,表計算ソフトによるマクロ機能を使わないで初歩的な組込み関数によるセルのみの計算に従った計算の見える化に関した計算ツールを構築した。本件は,その一例として,コンクリートの収縮・膨張の体積変化やクリープの変形と,それら変形が拘束されて作用する応力やひび割れ発生やひび割れ幅等を解く手法の計算ツールを開発したものである。

  • ホーム
  • ご挨拶
  • 研究シーズ
    • 研究シーズ条件検索
    • 研究シーズ一覧
    • キーワード一覧
  • 学部学科一覧
    • 工学部
      • 都市デザイン工学科
      • 建築学科
      • 機械工学科
      • 電気電子システム工学科
      • 電子情報システム工学科
      • 応用化学科
      • 環境工学科
      • 生命工学科
      • 一般教育科
      • 総合人間学系教室
      • ナノ材料マイクロデバイス研究センター
      • インキュベーションラボ
      • その他
    • ロボティクス&デザイン工学部
      • ロボット工学科
      • システムデザイン工学科
      • 空間デザイン学科
      • その他
    • 情報科学部
      • 情報知能学科
      • 情報システム学科
      • 情報メディア学科
      • ネットワークデザイン学科
      • その他
    • 知的財産学部
      • 知的財産学科
    • 知的財産研究科
    • その他
      • 教務部
        • 教職教室
        • 教育センター
        • ランゲージラーニングセンター
        • その他
      • 情報センター
      • 八幡工学実験場
      • ものづくりセンター
      • ロボティクス&デザインセンター
  • 協力機関コーナー
    • 大阪産業技術研究所
    • 大阪商工会議所
    • 大阪信用金庫
  • 特集コーナー
    • イノベーション・ジャパン2020~大学見本市Online
    • 動画コーナー
    • 八幡工学実験場バーチャルツアー

研究シーズ・教員に対しての問合せや相談事項はこちら

技術相談申込フォーム

© INNOVATION DAYS 2021 智と技術の見本市.

v

Facebook

Dribbble

Behance

Instagram

E-mail