SDGsの分類 研究テーマ 自然科学 学科の分類 工学部一般教育科 第一原理計算で解き明かす原子核の姿 工学部 一般教育科 核物理研究室 明孝之 准教授 原子核分子動力学第一原理計算 元素の源となる原子核は陽子と中性子から構成され、それらの間に作用する「核力」によって結合します。核力はパイ中間子とよばれるミクロな粒子を陽子と中性子の間で交換することにより生じます。本研究では、この特徴を持つ核力が原子核の性質にどのような影響を与えるのか調べています。 背景と目的 原子核は、構成粒子である陽子と中性子(核子とよばれます)の間にはたらく核力によって結合する量子多体系です。核力は、湯川秀樹氏によって提唱された「パイ中間子」とよばれる粒子を核子間で交換することで説明される、とても強い引力です(図1)。本研究では、このパイ中間子を起源とする核力が原子核の構造に与える影響を調べています。特に核力をそのまま用いて原子核の構造を調べる「第一原理計算」を数値的に行っています。原子核の第一原理計算は世界中で精力的に行われていますが、核力の扱いは一般的に難しいため、結果は炭素12(陽子6個と中性子6個)までにとどまっています。原子核は300個程度の質量数(陽子と中性子の数の総和)まで存在しますが、重い原子核は最先端の理論でも計算が不可能であり、代わりに現象を再現するモデル化が導入されています。したがって、より大きな質量数を含めた原子核全体の性質を、その結合の基本原理である核力から解き上げ、解明することは原子核物理の大きな目標となっています。 図1: 陽子と中性子間のパイ中間子交換の概念図 内容 本研究では核力を扱う新しい原子核の理論を提唱しています。原子核を記述するためのベースとなる模型には「分子動力学」(Molecular Dynamics, MD)を用います。この理論では、陽子と中性子がパイ中間子を交換することで生じる特徴的な引力である「テンソル力」(非等方性をもつ)に注目し、原子核の内部でテンソル力の効果を受けた陽子・中性子の運動を適切に記述します。実際に小さな質量数の原子核に適用し、精密計算を再現することを確かめました(図2)。今後はこの新理論をより重い原子核へ適用することで、核力から原子核を理解し、さらに原子核自身の新奇な構造を探っていく予定です。 図2: 新しい原子核理論「TOAMD」によるHe原子核の結合エネルギーの収束計算 新規性 本研究ではパイ中間子の交換から生まれる核力の特徴である「テンソル力」を扱う原子核の理論を構築しています。核力を直接扱う理論は一般的に質量数が小さい原子核に制限されます。一方、本研究の理論ではテンソル力の効果を効率的に取り入れる工夫がなされており、より大きな質量数への適用が可能であると見込まれます。原子核の形は球形だけはなく、例えば変形したり、複数のα粒子(He原子核)に分離した分子的な状態も存在します(図3)。特に分子的状態は恒星内部における元素の生成過程の理解に重要です。本研究では、核子(陽子、中性子)をガウス関数型の波束で表した分子動力学(MD)を用います。核子を表す波束が近づいたり離れたりすることで、分子的な状態の原子核を容易に記述することができます。 図3: 炭素12(12C)が励起した3α状態(ホイル状態という)の概念図 用途・効果 原子核物理学:量子多体系である原子核の構造を、核力を用いてより基本的な観点から解明します。多体基礎理論:物理学や化学等の分野で扱う多粒子系の現象において、粒子間にはたらく多体相関を記述する基礎理論の発展につながります。 研究者INFO: 工学部 一般教育科 核物理研究室 明孝之 准教授 研究シーズ・教員に対しての問合せや相談事項はこちら 技術相談申込フォーム
上辻 靖智 機能材料のマルチスケール最適設計 材料に優れた特性を発現させる鍵は,微視構造にある.次世代新規デバイス開発の核となるマルチフェロイック材料の電気磁気効果を飛躍的に向上することを目的とし,顕微鏡で観察される微視(ミクロ)スケールと機械構造物を捉えた巨視(マクロ)スケールを連成したマルチスケール構造最適設計を駆使して,数値解析主導の材料設計開発を提供する.
藤本 哲生 コンクリート表面遮水壁型ロックフィルダムの耐震性能評価手法の確立に向けた研究 都市デザイン工学科の地盤領域(地盤防災研究室、地盤環境工学研究室)では,近年多発する豪雨や来たるべき巨大地震により山腹斜面や土構造物が崩壊する危険度を予測・評価するためのさまざまな研究を行っています.このうち,コンクリート表面遮水壁型ロックフィルダムの耐震性能評価手法の確立に向けた研究を紹介します.
森内 隆代 イオン選択性電極 金属イオンは、生体内で、水分調整や代謝などに大きく関与しています。当研究室では、社会の求める実用センサーを目指し、「目的のイオン・分子だけを認識・識別する認識化合物」を設計・合成しています。 そして、実際に用いられているイオン選択性電極としての性能評価や、センサー部の物性評価法の開発を行っています。
西脇 雅人 一過性および定期的な運動あるいは食品摂取の臨床試験的側面からの効果検証 一過性(急性の応答)および定期的(慢性の適応)な運動・身体活動の実施、あるいは食品摂取の実施をヒトを対象として実施し、UMIN-CTRなどに臨床試験登録を行った上で効果検証を行える。特に、血圧脈波検査装置を用いた動脈壁硬化度(いわゆる血管年齢)の評価、超音波エコーを用いた血管内皮機能の評価や各部位の血流量・血管径の評価、体格、筋力、柔軟性、歩行能力、有酸素性運動能力(最大酸素摂取量)、最大無酸素性パワーなどの評価、低酸素環境下への応答性と運動実施能力の評価、血中物質濃度(医療従事者との連携)の評価、客観的な身体活動や外出状況の評価が実施できる。
松島 栄次 新しい熱物性値測定法 未来の発電所となる核融合炉では,数十億度の超高温プラズマを閉じ込める構造材料として傾斜機能材料が,宇宙旅行を実現するためのロケットエンジンでは,数千度の燃焼ガスを噴射する構造材料として炭素繊維強化炭素複合材料が開発されています.どちらの材料も,【熱が加えられたとき,どのような応答をするのか?】を調べることが重要です.そこで,伝熱工学研究室では,そのような最先端の材料内を熱が伝わる速さとその測定法を研究しています.
原嶋 勝美 ソフトウェアエージェントによるによる社会シミュレーション 複雑な社会の動きの完璧な予測や、瞬間的な社会の状態の正確な把握は、AIを用いても極めて困難である。一方で、生物や人間など多くのシステムは、動的かつ予測不能な局面において極めて柔軟に対処している。 本研究では、様々な生物や物体を模擬したソフトウェア(エージェント)を作成し、エージェントの自律行動や相互作用によって、社会に実在する問題や、現実では実現しにくい社会環境での生物の振る舞いなどを検証する。
前元 利彦 未来の生活を変える新機能デバイスの開発 今まで半導体として利用されてきたシリコンに比べて異なる性質のもつ半導体や、透明でしなやかな材料を研究することで、新しい機能を持った素子の実現を目指します。たとえば、酸化物半導体に関する研究では透明なディスプレイ・情報端末を実現するための技術や、自在に曲げられるデバイス・センサに関する研究を進めています。これらの技術は未来の生活の利便性を大幅に高めます。
木原 崇雄 高速A/D変換器の非線形性を改善するデジタル補正技術 直接RFサンプリング受信機はA/D変換器(ADC)で数GHzのRF信号を低速のデジタルデータに変換している。この受信機の消費電力を十mW程度に減らせれば、無線端末用集積回路に応用可能となり、その開発コストと市場投入までの期間を軽減・短縮できる。電圧制御発振器(VCO)を用いたADCは高速変換と低消費電力動作を両立できるが、VCOの非線形性により発生する不要波が分解能を低下させる。本展示では、デジタル回路で不要波を低減させることでADCの高速変換・低消費電力動作を実現する技術を紹介する。
荒木 英夫 匂い検出を目的とした半導体ガスセンサシステム これまでにもコンピュータを利用した嗅覚について研究されているが、一般消費者が利用可能な形では実用化されていない。このことから我々はだれでも利用可能な人工嗅覚装置の実現を目指して研究を行っている。 人工嗅覚を実現するためには、空気中の化学物質を測定する必要があり、主にガスセンサを用いた研究がおこなわれている。本研究でも安価で取り扱いが容易な半導体ガスセンサを用いている。半導体ガスセンサは反応するガスが異なる種類が提供されており、我々の研究では複数の特性が異なる半導体ガスセンサとマイコンを組み合わせた小型で取扱いが簡単な人工嗅覚装置の実現を目指している。 一般的な半導体ガスセンサはヒータを持ち、内部の温度を管理する必要があるが、このヒータによる加熱を変更することにより感度を変化させることができる。これを利用して、一つのセンサからできるだけ多くの情報を得ることができるハードウエアを作成した。そして、得られた情報から匂いの種類を分類するために、機械学習を取り入れた認識システムを実現し評価を行った結果を示す。
長森 英二 培養骨格筋の機能的アッセイ技術 生体の骨格筋機能や疲労を定量的に計測することは個人差による困難を生じやすい.そこで,培養骨格筋細胞の活性張力を簡便かつ繰り返し評価可能な技術(特許第5549547号)を開発した.
上田 整 弾性数理解析による材料設計 数理固体力学は材料・機械・建築・土木工学に限らず、広い応用分野の様々な現象に対応しているが、その応用の根幹となるのは「線形弾性力学」である。この弾性力学は応用の目的や現象に合わせて基礎微分方程式を解くことに帰着される。 本研究室では、苛酷な使用条件下にある機械・構造物の材料設計および安全性・信頼性評価を目的として、材料の電気・熱・力学的挙動を解明している。恩師から頂いた言葉「弾性体の平衡の問題においては、非常に一般的な大定理を打ち立てるよりは、種々の特解を求めて集積することで知識はもたらされる」を胸に、以下に示すような破壊力学解析を実施し、弾性数理解析の学問分野の確立を目指している。
中西 真悟 標準正規分布の幾何学的対称性 連続な確率変数の確率密度関数の積分形は、0から1までで評価できる累積分布関数です。では、累積分布関数を積分するとき、積分形の関数の一階の導関数は、累積確率として0から1までの傾きになります。つまり、直角三角形を用いた三平方の定理による評価が可能になります。そこで、標準正規分布の幾何学的対称性を応用しながら三平方の定理を用いてみると、新たな確率評価基準が思考できます。
眞銅 雅子 プラズマ照射による植物の成長促進と機能性改善 近年の食の安全性への関心や、健康志向による機能性食品の需要増に応えるため、薬品を使用しない殺菌・消毒処理および農産物の持つ機能性の改善が望まれています。一方で、半導体産業等で使用されるプラズマは電子・イオンに加え化学的活性の高い粒子(活性種)を多量に含み、農業・医療分野においても幅広い用途が見込まれます。本研究では、植物種子等の生体表面にプラズマ照射を行うことで、種子表面の殺菌や、成長の促進、鮮度保持、機能性の向上等を目指しています。
辻本 智子 認知言語学的手法を応用した英語前置詞教材の開発 英語習得において、しばしば躓きの原因となる多義語の前置詞であり、また認知言語学における多義語研究が前置詞に関して最も進んでいることから、認知言語学の知見を生かした中学生向けオンライン教材『アニメで学ぶ 英語前置詞ネットワーク辞典』を開発した。認知言語学で言う「スキーマ図」のアニメ化がポイントである。
馬場 望 地震複合火災を受けた鉄筋コンクリート部材の残存構造性能の評価 地震に対する防災計画は,主として本震による被害軽減を対象としているが,近年の比較的大きな地震では,本震に迫る大きな余震や二次災害による被害の拡大が懸念されており,これら地震複合災害を防災計画に盛り込むことが急務となっている。本研究は,地震複合火災に着目し,既存の建物構造物に多く存在する普通強度コンクリートを用いた鉄筋コンクリート部材を対象として,加熱を受けたコンクリートの圧縮強度残存比,拘束効果を考慮した構成則及び鉄筋コンクリート部材の残存構造性能の評価法を確立することを目的とする。
下村 修 一液型ロングライフ熱潜在性硬化剤の開発 一液型硬化剤として、保存安定性に優れ低温で硬化作用を持つアミン類をインターカレートしたリン酸ジルコニウムを合成した。これは高次に制御されたナノ空間内に配列したアミンを供することで、熱潜在性エポキシ樹脂硬化剤として利用できる。80℃以上に加熱することで樹脂硬化反応が高効率に促進し、作業時間短縮と省エネルギーに貢献しつつ、層状のリン酸ジルコニウム層間内への樹脂侵入による補強効果も一度に達成される利点を持つ。また、樹脂類とアミンの中から適当な配合処方の組み合わせにより硬化反応性の設計ノウハウを提供できる。
福原 和則 イノベーションを誘発するワークプレイスの設計 製品開発を行うワーカーのための新しい環境を構想するにあたっては、単なる「箱モノ」の設計を超えたプロセスを共有することが重要である。場としての環境を設計する行為を会社やチームそのものを設計する行為であるととらえ、時には「デザイン思考」の方法論を取り入れて検討をおこなうと有効である。内容の検討に加えてプロセスも合わせてマネージメントすることが求められる。
松本 政秀 OpenFOAMを用いた混相流解析 PCB(ポリ塩化ビフェニル)分解処理反応器内壁における腐食減肉発生メカニズムを解明するための初期検討として,異種二流体が化学反応を伴わずに混合する過程の熱流体解析を実施している.解析ツールとして,OpenFOAMの混相流解析ソルバー群より,非等温で圧縮性が考慮できる二相/二流体の非定常解析ソルバーtwoPhaseEulerFoam を用いた.腐食性を仮定した高密度流体が反応器隔壁の数mmの隙間から鉛直下方へ流れ落ち,減肉の生じた底部内壁へ到達することが確認できた.
中西 知嘉子 エッジAIで高精度画像認識 組み込み市場では,運用コストやセキュリティー,リアルタイム性などの問題から,エッジ(端末側)で単独処理できる「エッジAI」が期待されている.その実現方法であるFPGAによるエッジAIは根強いニーズがありながら,デバイスが高価格,実装が難しいという問題点があった.そこで,我々は,低価格のデバイスをターゲットにし,推論アルゴリズムを解析することで,効率よくアクセラレートする回路をFPGAで実装,処理を最適化することで,低消費電力で高速な推論処理を実現している.
藤里 俊哉 培養筋肉を用いた健康科学研究 組織工学・再生医療技術を用いて、体の外で骨格筋を作製することに成功しました。 この人工骨格筋は、長さ約15mm、直径約0.5mmと小さなサイズですが、電気刺激によって、人間の筋肉と同様の収縮運動させることができます。 最近、運動が健康に良いのは、骨格筋が作るマイオカインと呼ばれる物質によることが分かってきました。マイオカインは認知症の予防やがん予防にも効果があるとされています。 この人工骨格筋を運動させることでマイオカインをたくさん作らせることが可能だと考えています。