学習済みディープニューラルネットワークモデルの権利保護に関する研究
学習済みディープニューラルネットワーク(DNN)モデルの権利保護のために、電子透かしをモデル内へ埋め込む技術が注目されている。本研究では、画像分類型DNNモデルを対象とし、その内部パラメータは観測できず、入力画像と出力ラベル値のみが観測できる場合でも、そのDNNモデルを学習させた著作権者の情報を視覚的に取り出すことを実現する。
Beyond 5Gなどの将来のワイヤレスアクセスネットワークにおけるフロントホールの課題に、無線アクセス区間の広帯域化に伴うMIMOアンテナ数の増加やIoT基盤への応用に起因したフロントホール伝送容量の増大、 一層のスモールセル化に伴って発生する膨大な数のDU(分散無線ユニット)を有する基地局設備の設置、それらへのフロントホールリンク数の増大がある。これらに対する一つの解決策となるのが光ファイバの中に様々な電波に対して透明な自由空間を提供するRoF (Radio over Fiber) ネットワークである。RoFを用いることによってヘテロジニアスワイヤレスに汎用的に使用できるフロントホールと基地局が実現できる。また分散アンテナシステムの構築も容易となる。本シーズでは、RoFによる分散アンテナシステムを紹介し、それを用いた位置検出システムへの取り組みについて述べる。
研究シーズ・教員に対しての問合せや相談事項はこちら
技術相談申込フォーム© INNOVATION DAYS 2024 智と技術の見本市.